Apache CouchDB®
Release 3.3.3

Jan 03, 2024

1 Introduction

1.1

1.2

1.3

1.4
1.5

1.6

1.7

USER GUIDES

1
Technical Overview e 1
1.1.1 Document StOrage ot it e e e e e e e e e e e e 1
1.1.2 ACID Properties i i i e e e e e 2
I.1.3° Compaction v v it e e e e e e e e e e e e e e e e 2
L4 VIBWS . . o o e e e e 2
1.1.5 Security and Validation L 4
1.1.6 Distributed Updates and Replication 4
1.1.7 Implementation L e e 5
Why CouchDB? e e e e e e e e e e 6
12,1 Relax oo e e 6
1.2.2 A Different Way to Model YourData 7
1.2.3 A Better Fit for Common Applications 7
1.2.4 Building Blocks for Larger Systems 8
1.25 CouchDB Replication 9
1.2.6 LocalDatalsKing e e e 10
127 Wrapping Up o o e e e e e e e e e e e 10
Eventual ConsSistency oo e e e e e 10
1.3.1 Workingwiththe Grain L 10
132 TheCAPTheorem ittt it 11
1.3.3 Local ConSiStency v v v v v i e e e e e e e e e e e e e e e e e e 12
1.3.4 Validation e 13
1.3.5 Distributed Consistency e e 14
1.3.6 Incremental Replication e 14
1.3.7 CaseStudy o e 15
1.3.8 Wrapping Up e e 17
cURL: Your Command Line Friend 17
SECUTILY . . v o v v o o e 19
1.5.1 Authentication L e e e e e 19
1.5.2 Authentication Database 22
1.5.3 Authorization 25
Getting Started L L e e e e e e e e e e e e 26
1.6.1 All Systems Are Go! e e e 26
1.6.2 Welcome to Fauxton 28
1.6.3 Your First Database and Document 29
1.6.4 RunningaMango QUery 29
1.6.5 Triggering Replication e 31
1.6.6 Wrapping Up o o i e e e e e e e e e 31
The Core APL. o e 31
L7.1 Server . . . oo o e e e e e 32
172 Databases o o e e e e e e e e e e 32
1.7.3 Documents e e e 36
1.7.4 Replication i i e e e e e e e e e 39
1.7.5 Wrapping Up o o e e e e e e e 41

2 Replication 43
2.1 Introduction to Replication i e e e e e e 43
2.1.1 Transient and Persistent Replication 43

2.1.2 Triggering, Stopping and Monitoring Replications 43

2.1.3 Replication Procedure L 44

2.1.4 Master - Master replication oL 44

2.1.5 Controlling which Documents to Replicate 44

2.1.6 Migrating Datato Clients 0t i i e e 45

2.2 Replicator Database e 45
22,1 BaSiCs e e e e e e 45

2.2.2 Documents describing the same replication 49

2.2.3 Replication Scheduler e e 49

224 Replication States v v v v v e 50

225 Compatibility Mode e 51

2.2.6 Canceling replications e 52

227 Serverrestart e e e e e e e e e e e 52

22.8 CIustering o o i i e e e e e e 52

2.2.9 Additional Replicator Databases e 52
2.2.10 Fair Share Job Scheduling e 53
2.2.11 Replicating the replicator database L. 54
22,12 Delegations 54

2.2.13 Selector ObJects o v o i e e e e e 55
2.2.14 Specifying Usernames and Passwords 55
2.2.15 Replicate Winning RevisionsOnly, 56

2.3 Replication and conflict model o 57
23.1 CouchDBreplication e 57

2.3.2 Conflictavoidance e e 58

233 Revisiontree e e e e 59

2.3.4 Working with conflicting documents 59

235 Multipledocument APL L 60

23.6 Viewmapfunctions L e 61

2.3.7 Merging and revision history oL 64

2.3.8 Comparison with other replicating datastores 64

2.4 CouchDB Replication Protocol e 67
24.1 Preface e 68

2.4.2 Replication Protocol Algorithmo oL 69

243 Protocol Robustness. 94

244 ErrorResponses 94

245 Optimisations v v v i i e e e e e e e e e e e e e e e e 96

24.6 APIReference e 97

247 Reference L e e 97

3 Design Documents 929
3.1 DesignDocuments e e e e e e e 99
3.1.1 Creationand Structure e 99

3.1.2 View Functions e e e e 100

3.1.3 Show Functions e 104

3.1.4 ListFunctions L e 106

3.1.5 Update Functions o 0 e e e e e e e 107

3.1.6 Filter Functions e e 107

3.1.7 Validate Document Update Functions 110

32 Guideto VIEWS o ot e e e e e e e 113
32.1 Introduction to VIEWSo e e e e e 113

322 ViewsCollation e 123

323 Joins With Views e 127

324 View Cookbook for SQL Jockeys Lo 134

3.2.5 PaginationRecipe L 141

33 Search e 145

4 Best Practices

4.1

4.2

4.3
4.4
4.5

4.6

5 Installation

5.1

52

53

54

5.5
5.6
5.7
5.8

59

33.1 Indexfunctions e
3.3.2 0 Analyzers e e e e e e e e e e
333 QUETIES . . . o v e e e e e e e e e e e e e e e e e e
334 Query Syntax e e e e e e e
3.3.5 Geographical searches L e
3.3.6 Highlighting searchterms.
Document Design Considerations e
4.1.1 Don’trely on CouchDB’s auto-UUID generation
4.1.2 Alternatives to auto-incrementing SEqUENCES v v v v v v v v e e
4.1.3 Pre-aggregatingyourdata e e e e e e e
4.1.4 Designing an application to work with replication
4.1.5 Adding client-side security with a translucent database
Document submission using HTML Forms
421 TheHTML form e e et e
422 Theupdate function e e e
423 Exampleoutput e e
Using an ISO Formatted Date for DocumentIDs
JavaScript development tips oL e e
View recommendationso e e e e e
4.5.1 Deploying a view change in a live environment
Reverse Proxies e
4.6.1 Reverse proxying with HAProxy
4.6.2 Reverse proxying withnginx
4.6.3 Reverse ProxyingwithCaddy2
4.6.4 Reverse Proxying with Apache HTTP Server
Installation on Unix-like systems e
5.1.1 Installation using the Apache CouchDB convenience binary packages
5.1.2 Inmstallation fromsource e
5.1.3 Dependencieso e e e e e e e e e
5.1.4 Installing L e e e e
5.1.5 User Registration and Security L o
5.1.6 FirstRun e
5.1.7 RunningasaDaemon e e e e
Installation on Windows L e
5.2.1 Installation from binaries L.
5.2.2 Installation from SOUICES e e
Installation on macOS L e e
5.3.1 Installation using the Apache CouchDB native application
5.3.2 Installation with Homebrew
5.3.3 Installation fromsource e e e
Installationon FreeBSD oo
54.1 Installation from ports oL e
Installation viaDocker e
Installation viaSnap L e e e e
Installation on Kubernetes L e
Search Plugin Installation L
5.8.1 Installation of Binary Packages o
582 Chef o e
5.83 Kubernetes L e e e
5.84 Additional Details e
Upgrading from prior CouchDB releases
5.9.1 Important NOtES o o o it e e e e e e e e e
59.2 Upgrading from CouchDB 2.x
5.9.3 Upgrading from CouchDB 1.x it e e

161
161
161
161
162
162
165
166
166
166
167
168
168
169
169
169
169
170
172
173

175
175
175
177
177
179
180
180
181
182
182
183
183
183
184
184
184
184
185
186
186
186
187
188
188
188
188
188
188
189

5.10 Troubleshooting an Installation e 189
5.10.1 FirstInstall0 189
5102 QuickBuildo 191
5103 Upgrading L e e e 191
5.10.4 Runtime Errors e 192
5.10.5 macOSKnownlssues L e 194

Setup 195

6.1 Single Node Setup L 195

6.2 Cluster SetUp e e e e 195
6.2.1 Portsand Firewalls 196
6.2.2 Configure and Test the Communication with Erlang 196
6.2.3 Preparing CouchDB nodes to be joined intoacluster 198
6.24 The Cluster Setup Wizard oo 199
6.2.5 TheCluster Setup API 199

Configuration 201

7.1 Introduction To Configuring e 201
7.1.1 Configuration files L 201
7.1.2 Parameter names and values o o o oo 202
7.1.3 Setting parameters via the configurationfile 0. 202
7.1.4 Setting parameters viathe HTTPAPL 203
7.1.5 Configuring the localnode o o o 203

7.2 Base Configuration e e e 203
7.2.1 BaseCouchDB Options ittt e e e 203

7.3 Configuring Clustering o i i e e e e e e e e e e e 206
7.3.1 Cluster Options ot i e e e e e e 206
7.3.2 RPCPerformance Tuning 207

7.4 Database Per User e e 208
7.4.1 Database Per User Options o vt i i v it e i et 208

7.5 CouchDB HTTP Server e 208
7.5.1 HTTP Server Options i ittt ie e et 208
7.5.2 HTTPS (SSL/TLS) Options o o ittt et e e e e e e e e e e 213
7.5.3 Cross-Origin Resource Sharing 215
7.54 Virtual Hosts L L e 217
7.5.5 X-Frame-Options o . o e e e e e e e e e e e e 218

7.6 Authentication and Authorization L oo 218
7.6.1 Server Administrators L. Lo e 218
7.6.2 Authentication Configuration Lo 220

7.7 Compaction i e e e e e e e 226
7.7.1 Database Compaction Options i v v vt e 226
7.7.2 View Compaction Options v v vt it e e e e e 226
7.77.3 Compaction Daemon e 227

7.8 Background Indexing e 228

79 TOQuUeue e e e e e e 229
7.9.1 Recommendations e 230

TA0 Log@ing . . . o o v i i e e e e e e e e e e e e e 230
7.10.1 Logging options e e e e e 230

7.1 Replicator. o e 232
7.11.1 Replicator Database Configuration 232
7.11.2 Fair Share Replicator Share Allocation 236

T2 QUETY SEIVETS . v v v v o o e 237
7.12.1 Query Servers Definition L 237
7.12.2 Query Servers Configuration L oo 238
7.12.3 Native Erlang Query Server L oo 239
7124 Search oL e 239
TA25 MaANZO .« v v v o e e e e e e e e e e e e e e e e 240

7.13 Miscellaneous Parameters oo o e 240

9

7.13.1 Configuration of Attachment Storage i
7.13.2 Statistic Calculation L
7.13.3 UUIDs Configuration it e e
7.13.4 Vendorinformation oL
7.13.5 Content-Security-Policy
7.13.6 Configuration of Database Purge o .
7.13.7 Configuration of Prometheus Endpoint
7.14 Resharding L e e e e e
7.14.1 Resharding Configuration
Cluster Management
8.1 Theory o e e e e e e
8.2 NodeManagement
8.2.1 Addinganode. e e e e e
822 Removinganode e e e
8.3 Database Management it e e e e e e e e e e e e e e e e e e e
8.3.1 Creatingadatabase e e e e
83.2 Deletingadatabase L e
8.3.3 Placing a database on specificnodes L oL o Lo
8.4 Shard Management L. e e e e e
8.4.1 Introduction e
8.4.2 Examining database shards e
843 Movingashard L
8.4.4 Specifying database placement Lo
8.4.5 Splitting Shards L e
8.4.6 Stopping ReshardingJobs L
8.4.7 Merging Shards e e e e e e
8.5 Clustered Purge o e e e e e
8.5.1 Imternal Structures
8.5.2 Compaction of Purges e
8.5.3 Local Purge Checkpoint Documents
8.5.4 Imternal Replication L e e e
855 Indexes
8.5.6 Config Settings e e e e e
8.6 TLS Erlang Distribution 0 e e e e e
8.6.1 Generate Certificate e
8.6.2 Config Settings i i e e e e e e e e
863 ConnecttoRemsh.
8.7 Troubleshooting CouchDB 3 with WeatherReport.
87.1 Overview L e e e e e
87.2 Usage . . . o o e e e e e e
Maintenance
9.1 Compaction. e e e e e
9.1.1 Automatic Compaction i e e e
9.1.2 Manual Database Compaction vt
9.1.3 Manual View Compaction o vttt e e e e
9.2 Performance
9.2.1 DiskI/O o e e e
9.2.2 System Resource Limits L o L o
9.23 Network e e
924 CouchDB e
925 VIEWS
9.3 BackingupCouchDB e
9.3.1 Database Backups
9.3.2 Configuration Backups
9.3.3 LogBackups e e

247
247
248
248
249
249
249
249
249
250
250
251
253
258
259
261
261
262
262
262
263
263
264
264
264
265
265
266
266
266
266

269
269
269
272
273
274
274
274
276
276
277
278
278
279
279

10 Fauxton
Fauxton Setup e e e e e e e

10.1

10.1.1
10.1.2
10.1.3

Fauxton Visual Guide e
Development Server e
Understanding Fauxton Code layout

11 Experimental Features
11.1 Content-Security-Policy (CSP) Header Support for /_utils (Fauxton)

12 API Reference
12.1 APIBasics o o e e e e

12.2

12.3

12.1.1

12.1.2
12.1.3
12.1.4
Server
12.2.1

12.2.2
12.2.3

12.2.4
12.2.5
12.2.6
12.2.7
12.2.8
12.2.9

Request Format and Responses L L o
HTTP Headers e e e e e
JSONBasics o 0

/_all_dbs e e
/_dbs_info e
/_ClUuSTer_SetUp v i i i e e e e e e e e e e
/_db_updates e e
/_membership e e e e
/_replicate e
/_scheduler/jobs e e e e

12.2.10 /_scheduler/docs @ i e e e e

12.2.11
12.2.12
12.2.13

/_node/{node-name} e e e
/_node/{node-name}/_stats e e e e
/_node/{node-name}/_prometheus,

12.2.14 /_node/{node-name}/_sSystem i i e

12.2.15
12.2.16
12.2.17
12.2.18
12.2.19

/_node/{node-name}/_restart
/_node/{node-name}/_versions e e e
/_search_analyze e e e
/_utils ..o e
JUD o o o e e e e e e e e e e e e e

12220 /_uuids e e e e e e

12.2.21
12.2.22
12.2.23

/favicon.ico L e e e
/_reshard e e e
Authentication e e e e

12.2.24 Configuration o e e e e
Databases e e

12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.3.7
12.3.8
12.3.9
12.3.10
12.3.11
12.3.12
12.3.13
12.3.14
12.3.15
12.3.16
12.3.17

/db e
/{db}/_all_docs e e
/{db}/_design_docs e e e
/{db}/_bulk_get
/{db}/_bulk_docs e e
/db/_find e
/db/_index e e
/db/_explain e e e e e e
/db/_shards e e
/db/_shards/doc e e
/db/_sync_shards e e e e e
/db/_changes e e e
/db/_compact e e e e e e
/db/_compact/design-doc
/db/_ensure_full_commit e e
/db/_view_cleanup e e e e e e
/db/_SeCurity e e e e e

281
281
281
281
281

vi

12.3.18 /db/_purge e e e e e e e e e e e e e e e 423

12.3.19 /db/_purged_infos_limit 426
12.3.20 /db/_missing_revs e e e e e e e e e 428
12321 /db/_revs_diff. e e 429
12.3.22 /db/_revs_limit 431

124 Documents e e e e e e e e e e e e e 432
124.1 /db/doC o e e e e e 432
1242 /db/doc/attachment e e 453

12.5 DesignDocuments L e e e 458
12.5.1 /db/_design/design-doc e e 458
12.5.2 /db/_design/design-doc/attachment 459
12.5.3 /db/_design/design-doc/_info 460
125.4 /db/_design/design-doc/_view/view-name 461
12.5.5 /db/_design/design-doc/_search/index-name 476
12.5.6 /db/_design/design-doc/_search_info/index-name 478
12.5.7 /db/_design/design-doc/_show/show-name 479
12.5.8 /db/_design/design-doc/_show/show-name/doc-id 480
12.5.9 /db/_design/design-doc/_list/list-name/view-name 481
12.5.10 /db/_design/design-doc/_list/list-name/other-ddoc/view-name 482
12.5.11 /db/_design/design-doc/_update/update-name 483
12.5.12 /db/_design/design-doc/_update/update-name/doc-id 484
12.5.13 /db/_design/design-doc/_rewrite/path 485

12.6 Partitioned Databases e e e e e 488
12.6.1 /db/_partition/partition. e 489
12.6.2 /db/_partition/partition/_all_docs. 489
12.6.3 /db/_partition/partition/_design/design-doc/_view/view-name 490
12.6.4 /db/_partition/partition_id/_find, 491
12.6.5 /db/_partition/partition_id/_explain 492
12.7 Local (non-replicating) Documents o o e e e 492
12.7.1 /db/_local_docs i e e e e e e e e e e e 492
12.7.2 /db/_local/id e 495

13 JSON Structure Reference 497
13.1 All Database Documents e e e e e e e e e e 497
13.2 Bulk Document Response e 497
13.3 Bulk Documents e e e e e e e e e e 497
13.4 Changes information foradatabase L e 498
13.5 CouchDB Document e e e e e e 498
13.6 CouchDB Error Status e e e e e e e 498
13.7 CouchDB database information object 0., 498
13.8 DesignDocument e 499
13.9 Design Document Information L o 499
13.10 Document with Attachments e e 499
13.11 Listof Active Tasks e e e 499
13.12 Replication Settings L e e e 500
13.13 Replication Status e 500
13.14 Request Object o o i e e e e e e 501
13.15 Request2 0bject o v i e e e e e e e e 503
13.16 Response ObJeCt o o i e e e e e e e e e e e e e 503
13.17 Returned CouchDB Document with Detailed RevisionInfo 503
13.18 Returned CouchDB Document with RevisionInfo 504
13.19 Returned Document with Attachments 504
13.20 Security Object o e e e e e e e e 504
13.21 User Context ObJect o v v i ot e e e e e e e e e e e e e e e e e 505
13.22 View Head Information e 505
14 Query Server 507
14.1 Query Server Protocol e e e e 507

vii

T4.1.1 reset o o e e e 507

14.1.2 add_lib e e e e 508
14.1.3 add_fun e e e e 508
14.1.4 map_doC e e e e e e e e e e e e e 509
14.1.5 reduce e e e e 510
14.1.6 rereduce e e e e e e e e 510
14.1.7 ddoC. e e e e e e e 511
14.1.8 Returning errors v v v v v v i e 524
14.1.9 Logg@ing o v i e e e e e e e e 525

142 JavaScript. e e 525
14.2.1 Design functions context i e e e 526
1422 CommonJS Modules e 529

143 Erlang. o o e e e e e e e e e e 529
15 Partitioned Databases 533
15.1 Whatisapartition? e e e e e e e e e e e e e 534
15.2 Why use partitions? e e e e e e e e e e e 534
15.3 Partitions By Example L 535
16 Release Notes 539
16.1 33xBranch e 539
16.1.1 Version 3.3.3 e e e e e e e e e e e e e 539
16.1.2 Version 3.3.2 e e e e e 540
16.1.3 Version3.3.1 e e e e e e 540
16.1.4 Version 3.3.0 e e e e e 540

162 3.2xBranch e 545
16.2.1 Version 3.2.3 e e e e e e e e e e e e e e e 546
16.2.2 Version 3.2.2 L e e e e e e e e 546
16.2.3 Version3.2.1 e e e e e 546
1624 Version 3.2.0 e e e e e e 547

163 3.1.xBranch e 551
16.3.1 Version 3.1.2 e e e e e e e 551
16.3.2 Version 3.1.1 e e e e e e e e 551
16.3.3 Version3.1.0 L e e e e 552

164 3.0.xBranch e e e e e 553
16.4.1 Upgrade NOES o v v i i e e i e e e e e e e e e e e e e e e e e e e 553
16.4.2 Version 3.0.1 e e e e 555
16.4.3 Version3.0.0 e e e e e e e e 556

16.5 23xBranch e e e 562
16.5.1 Upgrade Notes i i i e 562
16.5.2 Version 2.3.1 L e e e e e 563
16.5.3 Version 2.3.0 e e e e e 564

16.6 22.xBranch e e e e e e e e e e e 567
16.6.1 Upgrade Notes e 567
16.6.2 Version2.2.0 e e e e 568

16.7 2.1.xBranch e e e e e e 572
16.7.1 Upgrade NOES o v v i i e e i e e e e e e e e e e e e e e e e e e 572
16.7.2 Version 2.1.2 e e e e e e e e e 573
16.7.3 Version 2.1.1 e e e e e e e e 573
16.7.4 Version2.1.0 e e e e e e 575
16.7.5 FixedIssues e e e e e e e 577

16.8 2.0.xBranch e 579
16.8.1 Version 2.0.0 e e e e 579
16.8.2 Upgrade Notes o o i i e e e e e e e 580
16.8.3 KnownlIssues e e e e e 580
16.8.4 BreakingChanges 581

169 1.7xBranch e 581
16.9.1 Version 1.7.2 e e e e 581

viii

16.9.2 Version 1.7.1 e e e e e 581

16.9.3 Version 1.7.0 e e e e e 581

16.10 1.6.x Branch e e e e 583
16.10.1 Upgrade Notes e 583
16.10.2 Version 1.6.0 e e e e e e e 583

16.11 1.5.x Branch e e e e e e 584
16.11.1 Version 1.5.1 e e e 584
16.11.2 Version 1.5.0 e e e e e e 584

16.12 1.4x Branch e e e e e e e e e e 584
16.12.1 Upgrade Notes e 585
16.12.2 Version 1.4.0 L e e e e e e 585

16.13 1.3.xBranch e 585
16.13.1 Upgrade NOES v v v i e 585
16.13.2 Version 1.3.1 e e e e e e e e e e e e e 586
16.13.3 Version 1.3.0 e e e e e e e 586

16.14 1.2.x Branch e e e e 589
16.14.1 Upgrade NOtes o v i i it et e e e e e e e 589
16.14.2 Version 1.2.2 e e e e e 590
16.14.3 Version 1.2.1 o e e e e e e e 590
16.14.4 Version 1.2.0 e e e e e 591

16.15 1.1.xBranch e e e 593
16.15.1 Upgrade Notes i it e e e e e 593
16.15.2 Version 1.1.2 e e e e e 593
16.15.3 Version 1.1.1 o e e e e e 594
16.15.4 Version 1.1.0 L e e e e e e e e 595

16.16 1.0.x Branch e e 596
16.16.1 Upgrade NOtes i ittt e e e e e e 596
16.16.2 Version 1.0.4 e e e 597
16.16.3 Version 1.0.3 e e 597
16.16.4 Version 1.0.2 L e e e e e e e e e e e 598
16.16.5 Version 1.0.1 e e e e e e e e 599
16.16.6 Version 1.0.0 e e e e 600

16.17 0.11.xBranch e e e e e e e 601
16.17.1 Upgrade NOES v v i i e 601
16.17.2 Version 0.11.2 e e e e e e e e e e 602
16.17.3 Version O.11.1 e e e e e e e e 603
16.17.4 Version 0.11.0 e e e e e e e 605

16.18 0.10.x Branch e 607
16.18.1 Upgrade NOES o v v i i e 607
16.18.2 Version 0.10.2 e e e e e e e e 608
16.18.3 Version 0.10.1 e e e e e e e e e 608
16.18.4 Version 0.10.0 L e e e e e e 609

16.19 0.9.x Branch e e e e e 609
16.19.1 Upgrade NOES v v i i e 609
16.19.2 Version 0.9.2 e e e e 610
16.19.3 Version 0.9.1 e e e e 611
16.19.4 Version 0.9.0 e e e e e e 612

1620 0.8.x Branch e e 614
16.20.1 Version 0.8.1-incubating 614
16.20.2 Version 0.8.0-incubating e e e 615

17 Security Issues / CVEs 617
17.1 CVE-2010-0009: Apache CouchDB Timing Attack Vulnerability 617
I7.1.1 Description o v v i e e e e e e e e e e e e e e 617
17.1.2 MiItigation 0 o i e e e e e e e e e e e e 617
17.1.3 Example o o e e e e e 617
17.1.4 Credit e e e e e 617

17.2 CVE-2010-2234: Apache CouchDB Cross Site Request Forgery Attack 618

17.3

17.4

17.5

17.6

17.7

17.8

17.9

17.10

17.11

17.12

17.13

17.14

17.15

17.2.1 Description o . e e e e e e e e e e e e e 618

1722 MItigation o v e e e e e e e e e e e e e e e e e e 618
1723 Example o o e e e e e e e e 618
1724 Credit 00 e e 618
CVE-2010-3854: Apache CouchDB Cross Site ScriptingIssue 618
17.3.1 Description e 619
17.3.2 MItigation o v e e e e e e e e e e e e e e 619
1733 Example o o e e e e e e e e 619
1734 Credit oo e 619
CVE-2012-5641: Information disclosure via unescaped backslashes in URLs on Windows 619
17.4.1 Description e 619
17.42 MItgation o vt e e e e e e e e e e e e e e e 620
17.43 Work-Around 620
17.4.4 Acknowledgement 620
17.45 References. e 620
CVE-2012-5649: JSONP arbitrary code execution with Adobe Flash 620
17.5.1 Description e e e e e e e e e e e 621
17.52 MItgation o v e e e e e e e e e e e e e 621
17.5.3 Work-Around 621
CVE-2012-5650: DOM based Cross-Site Scripting viaFuton UL 621
17.6.1 Description e 621
17.6.2 Mitigation e e 621
17.6.3 Work-Around 622
17.6.4 Acknowledgement e e e e 622
CVE-2014-2668: DoS (CPU and memory consumption) via the count parameter to /_uuids . . . 622
17.7.1 Description e e 622
17.7.2 Mitigation e e e 622
17.7.3 Work-Around e e 623
CVE-2017-12635: Apache CouchDB Remote Privilege Escalation 623
17.8.1 Description e e 623
17.82 Mitigation e 623
17.83 Example oL 623
1784 Credit e 624
CVE-2017-12636: Apache CouchDB Remote Code Execution 624
17.9.1 Description o v v i e e e e e e e e e e e e 624
17.9.2 Mitigation e 624
1793 Credit o o e e e e 624
CVE-2018-11769: Apache CouchDB Remote Code Execution 624
17.10.1 Description o v v i e e e e e e e e e e e e e e e e e 625
17.10.2 MItigation o v vt e e e e e e e e e e e e e e e e e 625
CVE-2018-17188: Apache CouchDB Remote Privilege Escalations 625
17.11.1 Description e 625
17.11.2 Mitigation oL L e e e e e 626
17.11.3 Credit o oo e 626
CVE-2018-8007: Apache CouchDB Remote Code Execution 626
17.12.1 Description e e e e 626
17.12.2 Mitigation e 626
17123 Credit o o oo e e e e 627
CVE-2020-1955: Apache CouchDB Remote Privilege Escalation 627
17.13.1 Description o v v i e e e e e e e e e e e e e e e e 627
17.13.2 MAtgation o vt e e e e e e e e e e e e 627
17133 Credit oo o e 627
CVE-2021-38295: Apache CouchDB Privilege Escalation 627
17.14.1 Description e e e e 628
17.14.2 MItgation o vt e e e e e e e e e e e e e e e e e 628
17.14.3 Credit o0 e 628
CVE-2022-24706: Apache CouchDB Remote Privilege Escalation 628

17.15.1 Description e 628

17.15.2 Mitigation o o v e e e e e e e e e e e e e e e e e 629

17.153 Credit o o e e e 629

17.16 CVE-2023-26268: Apache CouchDB: Information sharing via couchjs processes 629
17.16.1 Description e e 629

17.16.2 Mitigation e 630

17.16.3 Workarounds 630

17.16.4 Credit e e 630

17.17 CVE-2023-45725: Apache CouchDB: Privilege Escalation Using Design Documents 630
17.17.1 Description e e 630

17.17.2 Mitigation e 631

17.17.3 Workarounds L 631

17174 Credit o L e e 632

18 Reporting New Security Problems with Apache CouchDB 633
19 About CouchDB Documentation 635
19.1 LACeNSE v v o i e e e e e e e e e e e e 635

20 Contributing to this Documentation 639
20.1 Style Guidelines for this Documentation L 641
20.1.1 The guidelines e 641

API Quick Reference 643
Configuration Quick Reference 645
Index 649

xi

xii

CHAPTER
ONE

INTRODUCTION

CouchDB is a database that completely embraces the web. Store your data with JSON documents. Access your
documents with your web browser, via HTTP. Query, combine, and transform your documents with JavaScript.
CouchDB works well with modern web and mobile apps. You can distribute your data, efficiently using CouchDB’s
incremental replication. CouchDB supports master-master setups with automatic conflict detection.

CouchDB comes with a suite of features, such as on-the-fly document transformation and real-time change no-
tifications, that make web development a breeze. It even comes with an easy to use web administration console,
served directly out of CouchDB! We care a lot about distributed scaling. CouchDB is highly available and partition
tolerant, but is also eventually consistent. And we care a lot about your data. CouchDB has a fault-tolerant storage
engine that puts the safety of your data first.

In this section you’ll learn about every basic bit of CouchDB, see upon what conceptions and technologies it built
and walk through short tutorial that teach how to use CouchDB.

1.1 Technical Overview

1.1.1 Document Storage

A CouchDB server hosts named databases, which store documents. Each document is uniquely named in the
database, and CouchDB provides a RESTful HTTP API for reading and updating (add, edit, delete) database
documents.

Documents are the primary unit of data in CouchDB and consist of any number of fields and attachments. Docu-
ments also include metadata that’s maintained by the database system. Document fields are uniquely named and
contain values of varying types (text, number, boolean, lists, etc), and there is no set limit to text size or element
count.

The CouchDB document update model is lockless and optimistic. Document edits are made by client applications
loading documents, applying changes, and saving them back to the database. If another client editing the same
document saves their changes first, the client gets an edit conflict error on save. To resolve the update conflict, the
latest document version can be opened, the edits reapplied and the update tried again.

Single document updates (add, edit, delete) are all or nothing, either succeeding entirely or failing completely. The
database never contains partially saved or edited documents.

http://en.wikipedia.org/wiki/CAP_theorem
http://en.wikipedia.org/wiki/REST

Apache CouchDB®, Release 3.3.3

1.1.2 ACID Properties

The CouchDB file layout and commitment system features all Atfomic Consistent Isolated Durable (ACID) prop-
erties. On-disk, CouchDB never overwrites committed data or associated structures, ensuring the database file is
always in a consistent state. This is a “crash-only” design where the CouchDB server does not go through a shut
down process, it’s simply terminated.

Document updates (add, edit, delete) are serialized, except for binary blobs which are written concurrently.
Database readers are never locked out and never have to wait on writers or other readers. Any number of clients can
be reading documents without being locked out or interrupted by concurrent updates, even on the same document.
CouchDB read operations use a Multi-Version Concurrency Control (MVCC) model where each client sees a con-
sistent snapshot of the database from the beginning to the end of the read operation. This means that CouchDB
can guarantee transactional semantics on a per-document basis.

Documents are indexed in B-trees by their name (DocID) and a Sequence ID. Each update to a database instance
generates a new sequential number. Sequence IDs are used later for incrementally finding changes in a database.
These B-tree indexes are updated simultaneously when documents are saved or deleted. The index updates always
occur at the end of the file (append-only updates).

Documents have the advantage of data being already conveniently packaged for storage rather than split out across
numerous tables and rows in most database systems. When documents are committed to disk, the document fields
and metadata are packed into buffers, sequentially one document after another (helpful later for efficient building
of views).

When CouchDB documents are updated, all data and associated indexes are flushed to disk and the transactional
commit always leaves the database in a completely consistent state. Commits occur in two steps:

1. All document data and associated index updates are synchronously flushed to disk.

2. The updated database header is written in two consecutive, identical chunks to make up the first 4k of the
file, and then synchronously flushed to disk.

In the event of an OS crash or power failure during step 1, the partially flushed updates are simply forgotten on
restart. If such a crash happens during step 2 (committing the header), a surviving copy of the previous identical
headers will remain, ensuring coherency of all previously committed data. Excepting the header area, consistency
checks or fix-ups after a crash or a power failure are never necessary.

1.1.3 Compaction

Wasted space is recovered by occasional compaction. On schedule, or when the database file exceeds a certain
amount of wasted space, the compaction process clones all the active data to a new file and then discards the old
file. The database remains completely online the entire time and all updates and reads are allowed to complete
successfully. The old database file is deleted only when all the data has been copied and all users transitioned to
the new file.

1.1.4 Views

ACID properties only deal with storage and updates, but we also need the ability to show our data in interesting
and useful ways. Unlike SQL databases where data must be carefully decomposed into tables, data in CouchDB
is stored in semi-structured documents. CouchDB documents are flexible and each has its own implicit structure,
which alleviates the most difficult problems and pitfalls of bi-directionally replicating table schemas and their
contained data.

But beyond acting as a fancy file server, a simple document model for data storage and sharing is too simple to
build real applications on — it simply doesn’t do enough of the things we want and expect. We want to slice and
dice and see our data in many different ways. What is needed is a way to filter, organize and report on data that
hasn’t been decomposed into tables.

See also:

Guide to Views

2 Chapter 1. Introduction

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/B-tree

Apache CouchDB®, Release 3.3.3

View Model

To address this problem of adding structure back to unstructured and semi-structured data, CouchDB integrates
a view model. Views are the method of aggregating and reporting on the documents in a database, and are built
on-demand to aggregate, join and report on database documents. Because views are built dynamically and don’t
affect the underlying document, you can have as many different view representations of the same data as you like.

View definitions are strictly virtual and only display the documents from the current database instance, making
them separate from the data they display and compatible with replication. CouchDB views are defined inside
special design documents and can replicate across database instances like regular documents, so that not only
data replicates in CouchDB, but entire application designs replicate too.

JavaScript View Functions

Views are defined using JavaScript functions acting as the map part in a map-reduce system. A view function takes
a CouchDB document as an argument and then does whatever computation it needs to do to determine the data that
is to be made available through the view, if any. It can add multiple rows to the view based on a single document,
or it can add no rows at all.

See also:

View Functions

View Indexes

Views are a dynamic representation of the actual document contents of a database, and CouchDB makes it easy
to create useful views of data. But generating a view of a database with hundreds of thousands or millions of
documents is time and resource consuming, it’s not something the system should do from scratch each time.

To keep view querying fast, the view engine maintains indexes of its views, and incrementally updates them to re-
flect changes in the database. CouchDB’s core design is largely optimized around the need for efficient, incremental
creation of views and their indexes.

Views and their functions are defined inside special “design” documents, and a design document may contain any
number of uniquely named view functions. When a user opens a view and its index is automatically updated, all
the views in the same design document are indexed as a single group.

The view builder uses the database sequence ID to determine if the view group is fully up-to-date with the database.
If not, the view engine examines all database documents (in packed sequential order) changed since the last refresh.
Documents are read in the order they occur in the disk file, reducing the frequency and cost of disk head seeks.

The views can be read and queried simultaneously while also being refreshed. If a client is slowly streaming out
the contents of a large view, the same view can be concurrently opened and refreshed for another client without
blocking the first client. This is true for any number of simultaneous client readers, who can read and query the
view while the index is concurrently being refreshed for other clients without causing problems for the readers.

As documents are processed by the view engine through your ‘map’ and ‘reduce’ functions, their previous row
values are removed from the view indexes, if they exist. If the document is selected by a view function, the function
results are inserted into the view as a new row.

When view index changes are written to disk, the updates are always appended at the end of the file, serving to both
reduce disk head seek times during disk commits and to ensure crashes and power failures can not cause corruption
of indexes. If a crash occurs while updating a view index, the incomplete index updates are simply lost and rebuilt
incrementally from its previously committed state.

1.1. Technical Overview 3

http://en.wikipedia.org/wiki/MapReduce

Apache CouchDB®, Release 3.3.3

1.1.5 Security and Validation

To protect who can read and update documents, CouchDB has a simple reader access and update validation model
that can be extended to implement custom security models.

See also:

/db/_security

Administrator Access

CouchDB database instances have administrator accounts. Administrator accounts can create other administrator
accounts and update design documents. Design documents are special documents containing view definitions and
other special formulas, as well as regular fields and blobs.

Update Validation

As documents are written to disk, they can be validated dynamically by JavaScript functions for both security and
data validation. When the document passes all the formula validation criteria, the update is allowed to continue.
If the validation fails, the update is aborted and the user client gets an error response.

Both the user’s credentials and the updated document are given as inputs to the validation formula, and can be used
to implement custom security models by validating a user’s permissions to update a document.

A basic “author only” update document model is trivial to implement, where document updates are validated to
check if the user is listed in an “author” field in the existing document. More dynamic models are also possible,
like checking a separate user account profile for permission settings.

The update validations are enforced for both live usage and replicated updates, ensuring security and data validation
in a shared, distributed system.

See also:

Validate Document Update Functions

1.1.6 Distributed Updates and Replication

CouchDB is a peer-based distributed database system. It allows users and servers to access and update the same
shared data while disconnected. Those changes can then be replicated bi-directionally later.

The CouchDB document storage, view and security models are designed to work together to make true bi-
directional replication efficient and reliable. Both documents and designs can replicate, allowing full database
applications (including application design, logic and data) to be replicated to laptops for offline use, or replicated
to servers in remote offices where slow or unreliable connections make sharing data difficult.

The replication process is incremental. At the database level, replication only examines documents updated since
the last replication. If replication fails at any step, due to network problems or crash for example, the next replication
restarts at the last checkpoint.

Partial replicas can be created and maintained. Replication can be filtered by a JavaScript function, so that only
particular documents or those meeting specific criteria are replicated. This can allow users to take subsets of a large
shared database application offline for their own use, while maintaining normal interaction with the application and
that subset of data.

4 Chapter 1. Introduction

Apache CouchDB®, Release 3.3.3

Conflicts

Conflict detection and management are key issues for any distributed edit system. The CouchDB storage system
treats edit conflicts as a common state, not an exceptional one. The conflict handling model is simple and “non-
destructive” while preserving single document semantics and allowing for decentralized conflict resolution.

CouchDB allows for any number of conflicting documents to exist simultaneously in the database, with each
database instance deterministically deciding which document is the “winner” and which are conflicts. Only the
winning document can appear in views, while “losing” conflicts are still accessible and remain in the database
until deleted or purged during database compaction. Because conflict documents are still regular documents, they
replicate just like regular documents and are subject to the same security and validation rules.

When distributed edit conflicts occur, every database replica sees the same winning revision and each has the
opportunity to resolve the conflict. Resolving conflicts can be done manually or, depending on the nature of the
data and the conflict, by automated agents. The system makes decentralized conflict resolution possible while
maintaining single document database semantics.

Conflict management continues to work even if multiple disconnected users or agents attempt to resolve the same
conflicts. If resolved conflicts result in more conflicts, the system accommodates them in the same manner, deter-
mining the same winner on each machine and maintaining single document semantics.

See also:

Replication and conflict model

Applications

Using just the basic replication model, many traditionally single server database applications can be made dis-
tributed with almost no extra work. CouchDB replication is designed to be immediately useful for basic database
applications, while also being extendable for more elaborate and full-featured uses.

With very little database work, it is possible to build a distributed document management application with granular
security and full revision histories. Updates to documents can be implemented to exploit incremental field and blob
replication, where replicated updates are nearly as efficient and incremental as the actual edit differences (“diffs”).

1.1.7 Implementation

CouchDB is built on the Erlang OTP platform, a functional, concurrent programming language and development
platform. Erlang was developed for real-time telecom applications with an extreme emphasis on reliability and
availability.

Both in syntax and semantics, Erlang is very different from conventional programming languages like C or Java.
Erlang uses lightweight “processes” and message passing for concurrency, it has no shared state threading and all
data is immutable. The robust, concurrent nature of Erlang is ideal for a database server.

CouchDB is designed for lock-free concurrency, in the conceptual model and the actual Erlang implementation.
Reducing bottlenecks and avoiding locks keeps the entire system working predictably under heavy loads. CouchDB
can accommodate many clients replicating changes, opening and updating documents, and querying views whose
indexes are simultaneously being refreshed for other clients, without needing locks.

For higher availability and more concurrent users, CouchDB is designed for ‘“shared nothing” clustering. In a
“shared nothing” cluster, each machine is independent and replicates data with its cluster mates, allowing individual
server failures with zero downtime. And because consistency scans and fix-ups aren’t needed on restart, if the entire
cluster fails — due to a power outage in a datacenter, for example — the entire CouchDB distributed system becomes
immediately available after a restart.

CouchDB is built from the start with a consistent vision of a distributed document database system. Unlike cum-
bersome attempts to bolt distributed features on top of the same legacy models and databases, it is the result of
careful ground-up design, engineering and integration. The document, view, security and replication models, the
special purpose query language, the efficient and robust disk layout and the concurrent and reliable nature of the
Erlang platform are all carefully integrated for a reliable and efficient system.

1.1. Technical Overview 5

http://www.erlang.org/

Apache CouchDB®, Release 3.3.3

1.2 Why CouchDB?

Apache CouchDB is one of a new breed of database management systems. This topic explains why there’s a need
for new systems as well as the motivations behind building CouchDB.

As CouchDB developers, we’re naturally very excited to be using CouchDB. In this topic we’ll share with you
the reasons for our enthusiasm. We’ll show you how CouchDB’s schema-free document model is a better fit for
common applications, how the built-in query engine is a powerful way to use and process your data, and how
CouchDB’s design lends itself to modularization and scalability.

1.2.1 Relax

If there’s one word to describe CouchDB, it is relax. It is the byline to CouchDB’s official logo and when you start
CouchDB, you see:

Apache CouchDB has started. Time to relax.

Why is relaxation important? Developer productivity roughly doubled in the last five years. The chief reason for
the boost is more powerful tools that are easier to use. Take Ruby on Rails as an example. It is an infinitely complex
framework, but it’s easy to get started with. Rails is a success story because of the core design focus on ease of
use. This is one reason why CouchDB is relaxing: learning CouchDB and understanding its core concepts should
feel natural to most everybody who has been doing any work on the Web. And it is still pretty easy to explain to
non-technical people.

Getting out of the way when creative people try to build specialized solutions is in itself a core feature and one
thing that CouchDB aims to get right. We found existing tools too cumbersome to work with during development
or in production, and decided to focus on making CouchDB easy, even a pleasure, to use.

Another area of relaxation for CouchDB users is the production setting. If you have a live running application,
CouchDB again goes out of its way to avoid troubling you. Its internal architecture is fault-tolerant, and failures
occur in a controlled environment and are dealt with gracefully. Single problems do not cascade through an entire
server system but stay isolated in single requests.

CouchDB’s core concepts are simple (yet powerful) and well understood. Operations teams (if you have a team;
otherwise, that’s you) do not have to fear random behavior and untraceable errors. If anything should go wrong,
you can easily find out what the problem is, but these situations are rare.

CouchDB is also designed to handle varying traffic gracefully. For instance, if a website is experiencing a sudden
spike in traffic, CouchDB will generally absorb a lot of concurrent requests without falling over. It may take a little
more time for each request, but they all get answered. When the spike is over, CouchDB will work with regular
speed again.

The third area of relaxation is growing and shrinking the underlying hardware of your application. This is com-
monly referred to as scaling. CouchDB enforces a set of limits on the programmer. On first look, CouchDB might
seem inflexible, but some features are left out by design for the simple reason that if CouchDB supported them, it
would allow a programmer to create applications that couldn’t deal with scaling up or down.

Note: CouchDB doesn’t let you do things that would get you in trouble later on. This sometimes means you’ll
have to unlearn best practices you might have picked up in your current or past work.

6 Chapter 1. Introduction

Apache CouchDB®, Release 3.3.3

1.2.2 A Different Way to Model Your Data

We believe that CouchDB will drastically change the way you build document-based applications. CouchDB com-
bines an intuitive document storage model with a powerful query engine in a way that’s so simple you’ll probably
be tempted to ask, “Why has no one built something like this before?”

Django may be built for the Web, but CouchDB is built of the Web. I've never seen software that so
completely embraces the philosophies behind HTTP. CouchDB makes Django look old-school in the
same way that Django makes ASP look outdated.

—1Jacob Kaplan-Moss, Django developer

CouchDB’s design borrows heavily from web architecture and the concepts of resources, methods, and represen-
tations. It augments this with powerful ways to query, map, combine, and filter your data. Add fault tolerance,
extreme scalability, and incremental replication, and CouchDB defines a sweet spot for document databases.

1.2.3 A Better Fit for Common Applications

We write software to improve our lives and the lives of others. Usually this involves taking some mundane informa-
tion such as contacts, invoices, or receipts and manipulating it using a computer application. CouchDB is a great
fit for common applications like this because it embraces the natural idea of evolving, self-contained documents as
the very core of its data model.

Self-Contained Data

An invoice contains all the pertinent information about a single transaction the seller, the buyer, the date, and a list
of the items or services sold. As shown in Figure 1. Self-contained documents, there’s no abstract reference on this
piece of paper that points to some other piece of paper with the seller’s name and address. Accountants appreciate
the simplicity of having everything in one place. And given the choice, programmers appreciate that, too.

Real-world data is managed as real-world documents

Invoice 10/07/08
Joe the Plumber
Labor $200,00
Materials $ 75.00
$275.00

Due by: 12/01/08

Fig. 1: Figure 1. Self-contained documents

Yet using references is exactly how we model our data in a relational database! Each invoice is stored in a table as
a row that refers to other rows in other tables one row for seller information, one for the buyer, one row for each
item billed, and more rows still to describe the item details, manufacturer details, and so on and so forth.

This isn’t meant as a detraction of the relational model, which is widely applicable and extremely useful for a
number of reasons. Hopefully, though, it illustrates the point that sometimes your model may not “fit” your data in
the way it occurs in the real world.

Let’s take a look at the humble contact database to illustrate a different way of modeling data, one that more closely
“fits” its real-world counterpart — a pile of business cards. Much like our invoice example, a business card contains
all the important information, right there on the cardstock. We call this “self-contained” data, and it’s an important
concept in understanding document databases like CouchDB.

1.2. Why CouchDB? 7

Apache CouchDB®, Release 3.3.3

Syntax and Semantics

Most business cards contain roughly the same information — someone’s identity, an affiliation, and some contact
information. While the exact form of this information can vary between business cards, the general information
being conveyed remains the same, and we’re easily able to recognize it as a business card. In this sense, we can
describe a business card as a real-world document.

Jan’s business card might contain a phone number but no fax number, whereas J. Chris’s business card contains
both a phone and a fax number. Jan does not have to make his lack of a fax machine explicit by writing something
as ridiculous as “Fax: None” on the business card. Instead, simply omitting a fax number implies that he doesn’t
have one.

‘We can see that real-world documents of the same type, such as business cards, tend to be very similar in semantics
— the sort of information they carry, but can vary hugely in syntax, or how that information is structured. As human
beings, we’re naturally comfortable dealing with this kind of variation.

While a traditional relational database requires you to model your data up front, CouchDB’s schema-free design
unburdens you with a powerful way to aggregate your data after the fact, just like we do with real-world documents.
We’ll look in depth at how to design applications with this underlying storage paradigm.

1.2.4 Building Blocks for Larger Systems

CouchDB is a storage system useful on its own. You can build many applications with the tools CouchDB gives
you. But CouchDB is designed with a bigger picture in mind. Its components can be used as building blocks that
solve storage problems in slightly different ways for larger and more complex systems.

Whether you need a system that’s crazy fast but isn’t too concerned with reliability (think logging), or one that guar-
antees storage in two or more physically separated locations for reliability, but you’re willing to take a performance
hit, CouchDB lets you build these systems.

There are a multitude of knobs you could turn to make a system work better in one area, but you’ll affect another
area when doing so. One example would be the CAP theorem discussed in Eventual Consistency. To give you an
idea of other things that affect storage systems, see Figure 2 and Figure 3.

By reducing latency for a given system (and that is true not only for storage systems), you affect concurrency and
throughput capabilities.

A
Latency

Throughput

("

Concurrency

Fig. 2: Figure 2. Throughput, latency, or concurrency

When you want to scale out, there are three distinct issues to deal with: scaling read requests, write requests,
and data. Orthogonal to all three and to the items shown in Figure 2 and Figure 3 are many more attributes like
reliability or simplicity. You can draw many of these graphs that show how different features or attributes pull into
different directions and thus shape the system they describe.

CouchDB is very flexible and gives you enough building blocks to create a system shaped to suit your exact problem.
That’s not saying that CouchDB can be bent to solve any problem — CouchDB is no silver bullet — but in the area

8 Chapter 1. Introduction

Apache CouchDB®, Release 3.3.3

Data

Writes

("

Reads

Fig. 3: Figure 3. Scaling: read requests, write requests, or data

of data storage, it can get you a long way.

1.2.5 CouchDB Replication

CouchDB replication is one of these building blocks. Its fundamental function is to synchronize two or more
CouchDB databases. This may sound simple, but the simplicity is key to allowing replication to solve a number
of problems: reliably synchronize databases between multiple machines for redundant data storage; distribute data
to a cluster of CouchDB instances that share a subset of the total number of requests that hit the cluster (load
balancing); and distribute data between physically distant locations, such as one office in New York and another in
Tokyo.

CouchDB replication uses the same REST API all clients use. HTTP is ubiquitous and well understood. Replication
works incrementally; that is, if during replication anything goes wrong, like dropping your network connection, it
will pick up where it left off the next time it runs. It also only transfers data that is needed to synchronize databases.

A core assumption CouchDB makes is that things can go wrong, like network connection troubles, and it is designed
for graceful error recovery instead of assuming all will be well. The replication system’s incremental design shows
that best. The ideas behind “things that can go wrong” are embodied in the Fallacies of Distributed Computing:

* The network is reliable.
 Latency is zero.

» Bandwidth is infinite.

* The network is secure.

» Topology doesn’t change.

* There is one administrator.

e Transport cost is zero.

* The network is homogeneous.

Existing tools often try to hide the fact that there is a network and that any or all of the previous conditions don’t
exist for a particular system. This usually results in fatal error scenarios when something finally goes wrong. In
contrast, CouchDB doesn’t try to hide the network; it just handles errors gracefully and lets you know when actions
on your end are required.

1.2. Why CouchDB? 9

http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

Apache CouchDB®, Release 3.3.3

1.2.6 Local Data Is King

CouchDB takes quite a few lessons learned from the Web, but there is one thing that could be improved about
the Web: latency. Whenever you have to wait for an application to respond or a website to render, you almost
always wait for a network connection that isn’t as fast as you want it at that point. Waiting a few seconds instead
of milliseconds greatly affects user experience and thus user satisfaction.

What do you do when you are offline? This happens all the time — your DSL or cable provider has issues, or your
iPhone, G1, or Blackberry has no bars, and no connectivity means no way to get to your data.

CouchDB can solve this scenario as well, and this is where scaling is important again. This time it is scaling down.
Imagine CouchDB installed on phones and other mobile devices that can synchronize data with centrally hosted
CouchDBs when they are on a network. The synchronization is not bound by user interface constraints like sub-
second response times. It is easier to tune for high bandwidth and higher latency than for low bandwidth and very
low latency. Mobile applications can then use the local CouchDB to fetch data, and since no remote networking is
required for that, latency is low by default.

Can you really use CouchDB on a phone? Erlang, CouchDB’s implementation language has been designed to run
on embedded devices magnitudes smaller and less powerful than today’s phones.

1.2.7 Wrapping Up

The next document Eventual Consistency further explores the distributed nature of CouchDB. We should have
given you enough bites to whet your interest. Let’s go!

1.3 Eventual Consistency

In the previous document Why CouchDB?, we saw that CouchDB’s flexibility allows us to evolve our data as our
applications grow and change. In this topic, we’ll explore how working “with the grain” of CouchDB promotes
simplicity in our applications and helps us naturally build scalable, distributed systems.

1.3.1 Working with the Grain

A distributed system is a system that operates robustly over a wide network. A particular feature of network com-
puting is that network links can potentially disappear, and there are plenty of strategies for managing this type
of network segmentation. CouchDB differs from others by accepting eventual consistency, as opposed to putting
absolute consistency ahead of raw availability, like RDBMS or Paxos. What these systems have in common is an
awareness that data acts differently when many people are accessing it simultaneously. Their approaches differ
when it comes to which aspects of consistency, availability, or partition tolerance they prioritize.

Engineering distributed systems is tricky. Many of the caveats and “gotchas” you will face over time aren’t immedi-
ately obvious. We don’t have all the solutions, and CouchDB isn’t a panacea, but when you work with CouchDB’s
grain rather than against it, the path of least resistance leads you to naturally scalable applications.

Of course, building a distributed system is only the beginning. A website with a database that is available only
half the time is next to worthless. Unfortunately, the traditional relational database approach to consistency makes
it very easy for application programmers to rely on global state, global clocks, and other high availability no-nos,
without even realizing that they’re doing so. Before examining how CouchDB promotes scalability, we’ll look at the
constraints faced by a distributed system. After we’ve seen the problems that arise when parts of your application
can’t rely on being in constant contact with each other, we’ll see that CouchDB provides an intuitive and useful
way for modeling applications around high availability.

10 Chapter 1. Introduction

http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Paxos_%28computer_science%29

Apache CouchDB®, Release 3.3.3

1.3.2 The CAP Theorem

The CAP theorem describes a few different strategies for distributing application logic across networks. CouchDB’s
solution uses replication to propagate application changes across participating nodes. This is a fundamentally
different approach from consensus algorithms and relational databases, which operate at different intersections of
consistency, availability, and partition tolerance.

The CAP theorem, shown in Figure 1. The CAP theorem, identifies three distinct concerns:
* Consistency: All database clients see the same data, even with concurrent updates.
 Availability: All database clients are able to access some version of the data.
 Partition tolerance: The database can be split over multiple servers.

Pick two.

Consensus protocols
for HA consistency

Availability

Enforced consistency

Partition
tolerance

Eventual consistency

Fig. 4: Figure 1. The CAP theorem

When a system grows large enough that a single database node is unable to handle the load placed on it, a sensible
solution is to add more servers. When we add nodes, we have to start thinking about how to partition data between
them. Do we have a few databases that share exactly the same data? Do we put different sets of data on different
database servers? Do we let only certain database servers write data and let others handle the reads?

Regardless of which approach we take, the one problem we’ll keep bumping into is that of keeping all these database
servers in sync. If you write some information to one node, how are you going to make sure that a read request to
another database server reflects this newest information? These events might be milliseconds apart. Even with a
modest collection of database servers, this problem can become extremely complex.

When it’s absolutely critical that all clients see a consistent view of the database, the users of one node will have to
wait for any other nodes to come into agreement before being able to read or write to the database. In this instance,
we see that availability takes a backseat to consistency. However, there are situations where availability trumps
consistency:

Each node in a system should be able to make decisions purely based on local state. If you need to
do something under high load with failures occurring and you need to reach agreement, you're lost.
If you’re concerned about scalability, any algorithm that forces you to run agreement will eventually
become your bottleneck. Take that as a given.

—Werner Vogels, Amazon CTO and Vice President

If availability is a priority, we can let clients write data to one node of the database without waiting for other nodes
to come into agreement. If the database knows how to take care of reconciling these operations between nodes, we
achieve a sort of “eventual consistency” in exchange for high availability. This is a surprisingly applicable trade-oft
for many applications.

1.3. Eventual Consistency 11

Apache CouchDB®, Release 3.3.3

Unlike traditional relational databases, where each action performed is necessarily subject to database-wide con-
sistency checks, CouchDB makes it really simple to build applications that sacrifice immediate consistency for the
huge performance improvements that come with simple distribution.

1.3.3 Local Consistency

Before we attempt to understand how CouchDB operates in a cluster, it’s important that we understand the inner
workings of a single CouchDB node. The CouchDB API is designed to provide a convenient but thin wrapper
around the database core. By taking a closer look at the structure of the database core, we’ll have a better under-
standing of the API that surrounds it.

The Key to Your Data

At the heart of CouchDB is a powerful B-tree storage engine. A B-tree is a sorted data structure that allows
for searches, insertions, and deletions in logarithmic time. As Figure 2. Anatomy of a view request illustrates,
CouchDB uses this B-tree storage engine for all internal data, documents, and views. If we understand one, we
will understand them all.

GET /my-database/_design/example/_view/all?startkey="a"8endkey="z"

“example/all” Range lookup

Retrieve
view
B-Tree

JSON

collation
w/ICU

"all" z

JS%I__,« > ——view range eme]

1 |:| !
couchjs rows —JSON encoding

HTTP: {"total_rows":9,"offset":0,"rows":[...]}

Fig. 5: Figure 2. Anatomy of a view request

CouchDB uses MapReduce to compute the results of a view. MapReduce makes use of two functions, “map”
and “reduce”, which are applied to each document in isolation. Being able to isolate these operations means that
view computation lends itself to parallel and incremental computation. More important, because these functions
produce key/value pairs, CouchDB is able to insert them into the B-tree storage engine, sorted by key. Lookups by
key, or key range, are extremely efficient operations with a B-tree, described in big O notation as 0(log N) and
0(log N + K), respectively.

In CouchDB, we access documents and view results by key or key range. This is a direct mapping to the underlying
operations performed on CouchDB’s B-tree storage engine. Along with document inserts and updates, this direct
mapping is the reason we describe CouchDB’s API as being a thin wrapper around the database core.

Being able to access results by key alone is a very important restriction because it allows us to make huge perfor-
mance gains. As well as the massive speed improvements, we can partition our data over multiple nodes, without
affecting our ability to query each node in isolation. BigTable, Hadoop, SimpleDB, and memcached restrict object
lookups by key for exactly these reasons.

12 Chapter 1. Introduction

http://en.wikipedia.org/wiki/BigTable
http://hadoop.apache.org
http://aws.amazon.com/simpledb/
http://memcached.org

Apache CouchDB®, Release 3.3.3

No Locking

A table in a relational database is a single data structure. If you want to modify a table — say, update a row —
the database system must ensure that nobody else is trying to update that row and that nobody can read from that
row while it is being updated. The common way to handle this uses what’s known as a lock. If multiple clients
want to access a table, the first client gets the lock, making everybody else wait. When the first client’s request is
processed, the next client is given access while everybody else waits, and so on. This serial execution of requests,
even when they arrived in parallel, wastes a significant amount of your server’s processing power. Under high load,
a relational database can spend more time figuring out who is allowed to do what, and in which order, than it does
doing any actual work.

Note: Modern relational databases avoid locks by implementing MVCC under the hood, but hide it from the end
user, requiring them to coordinate concurrent changes of single rows or fields.

Instead of locks, CouchDB uses Multi-Version Concurrency Control (MVCC) to manage concurrent access to the
database. Figure 3. MVCC means no locking illustrates the differences between MVCC and traditional locking
mechanisms. MVCC means that CouchDB can run at full speed, all the time, even under high load. Requests are
run in parallel, making excellent use of every last drop of processing power your server has to offer.

Locking CouchDB
wiite ﬂ
..... ‘A
Commit to disk
_read
..fead “new version"«=**** =" -

Fig. 6: Figure 3. MVCC means no locking

Documents in CouchDB are versioned, much like they would be in a regular version control system such as Sub-
version. If you want to change a value in a document, you create an entire new version of that document and save
it over the old one. After doing this, you end up with two versions of the same document, one old and one new.

How does this offer an improvement over locks? Consider a set of requests wanting to access a document. The
first request reads the document. While this is being processed, a second request changes the document. Since the
second request includes a completely new version of the document, CouchDB can simply append it to the database
without having to wait for the read request to finish.

When a third request wants to read the same document, CouchDB will point it to the new version that has just been
written. During this whole process, the first request could still be reading the original version.

A read request will always see the most recent snapshot of your database at the time of the beginning of the request.

1.3.4 Validation

As application developers, we have to think about what sort of input we should accept and what we should reject.
The expressive power to do this type of validation over complex data within a traditional relational database leaves a
lot to be desired. Fortunately, CouchDB provides a powerful way to perform per-document validation from within
the database.

CouchDB can validate documents using JavaScript functions similar to those used for MapReduce. Each time you
try to modify a document, CouchDB will pass the validation function a copy of the existing document, a copy of
the new document, and a collection of additional information, such as user authentication details. The validation
function now has the opportunity to approve or deny the update.

By working with the grain and letting CouchDB do this for us, we save ourselves a tremendous amount of CPU
cycles that would otherwise have been spent serializing object graphs from SQL, converting them into domain
objects, and using those objects to do application-level validation.

1.3. Eventual Consistency 13

http://subversion.apache.org/
http://subversion.apache.org/

Apache CouchDB®, Release 3.3.3

1.3.5 Distributed Consistency

Maintaining consistency within a single database node is relatively easy for most databases. The real problems
start to surface when you try to maintain consistency between multiple database servers. If a client makes a write
operation on server A, how do we make sure that this is consistent with server B, or C, or D? For relational databases,
this is a very complex problem with entire books devoted to its solution. You could use multi-master, single-master,
partitioning, sharding, write-through caches, and all sorts of other complex techniques.

1.3.6 Incremental Replication

CouchDB’s operations take place within the context of a single document. As CouchDB achieves eventual consis-
tency between multiple databases by using incremental replication you no longer have to worry about your database
servers being able to stay in constant communication. Incremental replication is a process where document changes
are periodically copied between servers. We are able to build what’s known as a shared nothing cluster of databases
where each node is independent and self-sufficient, leaving no single point of contention across the system.

Need to scale out your CouchDB database cluster? Just throw in another server.

As illustrated in Figure 4. Incremental replication between CouchDB nodes, with CouchDB’s incremental repli-
cation, you can synchronize your data between any two databases however you like and whenever you like. After
replication, each database is able to work independently.

You could use this feature to synchronize database servers within a cluster or between data centers using a job
scheduler such as cron, or you could use it to synchronize data with your laptop for offline work as you travel.
Each database can be used in the usual fashion, and changes between databases can be synchronized later in both
directions.

put"_‘-“' ‘--A._‘_Efpllcatlon

- : Replication
. .i \..
“-._Replication

.__‘

Fig. 7: Figure 4. Incremental replication between CouchDB nodes

What happens when you change the same document in two different databases and want to synchronize these
with each other? CouchDB’s replication system comes with automatic conflict detection and resolution. When
CouchDB detects that a document has been changed in both databases, it flags this document as being in conflict,
much like they would be in a regular version control system.

This isn’t as troublesome as it might first sound. When two versions of a document conflict during replication,
the winning version is saved as the most recent version in the document’s history. Instead of throwing the losing
version away, as you might expect, CouchDB saves this as a previous version in the document’s history, so that you
can access it if you need to. This happens automatically and consistently, so both databases will make exactly the
same choice.

Itis up to you to handle conflicts in a way that makes sense for your application. You can leave the chosen document
versions in place, revert to the older version, or try to merge the two versions and save the result.

14 Chapter 1. Introduction

Apache CouchDB®, Release 3.3.3

1.3.7 Case Study

Greg Borenstein, a friend and coworker, built a small library for converting Songbird playlists to JSON objects
and decided to store these in CouchDB as part of a backup application. The completed software uses CouchDB’s
MVCC and document revisions to ensure that Songbird playlists are backed up robustly between nodes.

Note: Songbird is a free software media player with an integrated web browser, based on the Mozilla XULRunner
platform. Songbird is available for Microsoft Windows, Apple Mac OS X, Solaris, and Linux.

Let’s examine the workflow of the Songbird backup application, first as a user backing up from a single computer,
and then using Songbird to synchronize playlists between multiple computers. We’ll see how document revisions
turn what could have been a hairy problem into something that just works.

The first time we use this backup application, we feed our playlists to the application and initiate a backup. Each
playlist is converted to a JSON object and handed to a CouchDB database. As illustrated in Figure 5. Backing
up to a single database, CouchDB hands back the document ID and revision of each playlist as it’s saved to the
database.

Usage of _rev keeping a single Songbird synced with CouchDB

)
Initial back
R »| CouchDB
— 1 .
Rep I
) A
| Update with _rev]
U;gyﬁ:s | ’ »(CouchDB
N Sy
with ..EF.“!?...,..,
N “?9‘.‘5...,.‘,,.
PR
—_—

Fig. 8: Figure 5. Backing up to a single database

After a few days, we find that our playlists have been updated and we want to back up our changes. After we have fed
our playlists to the backup application, it fetches the latest versions from CouchDB, along with the corresponding
document revisions. When the application hands back the new playlist document, CouchDB requires that the
document revision is included in the request.

CouchDB then makes sure that the document revision handed to it in the request matches the current revision held
in the database. Because CouchDB updates the revision with every modification, if these two are out of sync it
suggests that someone else has made changes to the document between the time we requested it from the database
and the time we sent our updates. Making changes to a document after someone else has modified it without first
inspecting those changes is usually a bad idea.

Forcing clients to hand back the correct document revision is the heart of CouchDB’s optimistic concurrency.

We have a laptop we want to keep synchronized with our desktop computer. With all our playlists on our desktop,
the first step is to “restore from backup” onto our laptop. This is the first time we’ve done this, so afterward our
laptop should hold an exact replica of our desktop playlist collection.

After editing our Argentine Tango playlist on our laptop to add a few new songs we’ve purchased, we want to save
our changes. The backup application replaces the playlist document in our laptop CouchDB database and a new
document revision is generated. A few days later, we remember our new songs and want to copy the playlist across
to our desktop computer. As illustrated in Figure 6. Synchronizing between two databases, the backup application
copies the new document and the new revision to the desktop CouchDB database. Both CouchDB databases now
have the same document revision.

Because CouchDB tracks document revisions, it ensures that updates like these will work only if they are based
on current information. If we had made modifications to the playlist backups between synchronization, things
wouldn’t go as smoothly.

1.3. Eventual Consistency 15

http://en.wikipedia.org/wiki/Songbird_%28software%29

Apache CouchDB®, Release 3.3.3

Syncing playlists between multiple Songbird clients

¢ Restore from backup
L]
J 7 LI oo A > CouchDB on new laptop

Reply with _rev1

i 18l User edits
Si“ﬁw‘ playlist

)— Time passes...

b "
{ : “r Save with _rev2 CouchDB
N CONFLICT409 .

User edits -~
same playlist Wt : The laptop wins this time

This node must refresh from
the database before it can save

Fig. 9: Figure 6. Synchronizing between two databases

We back up some changes on our laptop and forget to synchronize. A few days later, we’re editing playlists on
our desktop computer, make a backup, and want to synchronize this to our laptop. As illustrated in Figure 7.
Synchronization conflicts between two databases, when our backup application tries to replicate between the two
databases, CouchDB sees that the changes being sent from our desktop computer are modifications of out-of-date
documents and helpfully informs us that there has been a conflict.

Recovering from this error is easy to accomplish from an application perspective. Just download CouchDB’s
version of the playlist and provide an opportunity to merge the changes or save local modifications into a new
playlist.

CouchDB A o
_rey1A - Replication
: v
D (couchoBB) G
. _reviA
CouchDB A . N
. ® Reorder
Lo . ® songs

Both revs are preserved

Fig. 10: Figure 7. Synchronization conflicts between two databases

16 Chapter 1. Introduction

Apache CouchDB®, Release 3.3.3

1.3.8 Wrapping Up

CouchDB’s design borrows heavily from web architecture and the lessons learned deploying massively distributed
systems on that architecture. By understanding why this architecture works the way it does, and by learning to
spot which parts of your application can be easily distributed and which parts cannot, you’ll enhance your ability
to design distributed and scalable applications, with CouchDB or without it.

We’ve covered the main issues surrounding CouchDB’s consistency model and hinted at some of the benefits to be
had when you work with CouchDB and not against it. But enough theory — let’s get up and running and see what
all the fuss is about!

1.4 cURL: Your Command Line Friend

The curl utility is a command line tool available on Unix, Linux, Mac OS X, Windows, and many other platforms.
curl provides easy access to the HTTP protocol (among others) directly from the command line and is therefore
an ideal way of interacting with CouchDB over the HTTP REST API.

For simple GET requests you can supply the URL of the request. For example, to get the database information:

shell> curl http://admin:password@127.0.0.1:5984

This returns the database information (formatted in the output below for clarity):

{
"couchdb": "Welcome",
"version": "3.0.0",
"git_sha": "83bdcf693",
"uuid": "56f16e7c93ff4a2dc20ebbacc7000b71",
"features": [
"access-ready",
"partitioned",
"pluggable-storage-engines",
"reshard",
"scheduler"
1,
"vendor": {
"name": "The Apache Software Foundation"

Note: For some URLSs, especially those that include special characters such as ampersand, exclamation mark, or
question mark, you should quote the URL you are specifying on the command line. For example:

shell> curl 'http://couchdb:5984/_uuids?count=5"

Note: On Microsoft Windows, use double-quotes anywhere you see single-quotes in the following examples. Use
doubled double-quotes (“”’) anywhere you see single double-quotes. For example, if you see:

shell> curl -X PUT 'http://127.0.0.1:5984/demo/doc' -d '{"motto": "I love gnomes"}'

you should replace it with:

shell> curl -X PUT "http://127.0.0.1:5984/demo/doc" -d "{""motto"": ""I love gnomes""}

"
—

1.4. cURL: Your Command Line Friend 17

Apache CouchDB®, Release 3.3.3

If you prefer, A" and \" may be used to escape the double-quote character in quoted strings instead.

You can explicitly set the HTTP command using the -X command line option. For example, when creating a
database, you set the name of the database in the URL you send using a PUT request:

shell> curl -X PUT http://user:pass@127.0.0.1:5984/demo
{"ok":true}

But to obtain the database information you use a GET request (with the return information formatted for clarity):

shell> curl -X GET http://user:pass@127.0.0.1:5984/demo

{
"compact_running" : false,
"doc_count" : O,
"db_name" : "demo",
"purge_seq" : 0,
"committed_update_seq" : O,
"doc_del_count" : O,
"disk_format_version" : 5,
"update_seq" : O,
"instance_start_time" : "0",
"disk_size" : 79

For certain operations, you must specify the content type of request, which you do by specifying the Content-Type
header using the -H command-line option:

shell> curl -H 'Content-Type: application/json' http://127.0.0.1:5984/ _uuids

You can also submit ‘payload’ data, that is, data in the body of the HTTP request using the -d option. This is useful
if you need to submit JSON structures, for example document data, as part of the request. For example, to submit
a simple document to the demo database:

shell> curl -H 'Content-Type: application/json' \
-X POST http://user:pass@127.0.0.1:5984/demo \
-d '{"company": "Example, Inc."}'
{"ok":true,"id":"8843faaf0b831d364278331bc3001bd8",
"rev":"1-33b9fbce46930280dab37d672bbc8bb9"}

In the above example, the argument after the -d option is the JSON of the document we want to submit.

The document can be accessed by using the automatically generated document ID that was returned:

shell> curl -X GET http://user:pass@127.0.0.1:5984/demo/
-.8843faaf0b831d364278331bc3001bd8
{"_id":"8843faaf®h831d364278331bc3001bd8",
"_rev":"1-33b9fbce46930280dab37d672bbc8bb9",

"company" :"Example, Inc."}

The API samples in the AP/ Basics show the HTTP command, URL and any payload information that needs to be
submitted (and the expected return value). All of these examples can be reproduced using curl with the command-
line examples shown above.

18 Chapter 1. Introduction

Apache CouchDB®, Release 3.3.3

1.5 Security

In this document, we’ll look at the basic security mechanisms in CouchDB: Basic Authentication and Cookie
Authentication. This is how CouchDB handles users and protects their credentials.

1.5.1 Authentication
CouchDB has the idea of an admin user (e.g. an administrator, a super user, or root) that is allowed to do anything
to a CouchDB installation. By default, one admin user must be created for CouchDB to start up successfully.

CouchDB also defines a set of requests that only admin users are allowed to do. If you have defined one or more
specific admin users, CouchDB will ask for identification for certain requests:

* Creating a database (PUT /database)

* Deleting a database (DELETE /database)

» Setup a database security (PUT /database/_security)

¢ Creating a design document (PUT /database/_design/app)

» Updating a design document (PUT /database/_design/app?rev=1-4E2)

* Deleting a design document (DELETE /database/_design/app?rev=2-6A7)
 Triggering compaction (POST /database/_compact)

* Reading the task status list (GET /_active_tasks)

* Restarting the server on a given node (POST /_node/{node-name}/_restart)
* Reading the active configuration (GET /_node/{node-name}/_config)

» Updating the active configuration (PUT /_node/{node-name}/_config/{section}/{key})

Creating a New Admin User
If your installation process did not set up an admin user, you will have to add one to the configuration file by hand

and restart CouchDB first. For the purposes of this example, we’ll create a default admin user with the password
password.

Warning: Don’t just type in the following without thinking! Pick a good name for your administrator user
that isn’t easily guessable, and pick a secure password.

To the end of your etc/local.ini file, after the [admins] line, add the text admin = password, so it looks
like this:

[admins]
admin = password

(Don’t worry about the password being in plain text; we’ll come back to this.)

Now, restart CouchDB using the method appropriate for your operating system. You should now be able to access
CouchDB using your new administrator account:

> curl http://admin:password@127.0.0.1:5984/_up
{"status":"ok","seeds": {}}

Great!

Let’s create an admin user through the HTTP API. We’ll call her anna, and her password is secret. Note the
double quotes in the following code; they are needed to denote a string value for the configuration API:

1.5. Security 19

Apache CouchDB®, Release 3.3.3

> HOST="http://admin:password@127.0.0.1:5984"
> NODENAME="_local"
> curl -X PUT $HOST/_node/$NODENAME/_config/admins/anna -d '"secret"'

As per the _config API’s behavior, we’re getting the previous value for the config item we just wrote. Since our
admin user didn’t exist, we get an empty string.

Please note that _local serves as an alias for the local node name, so for all configuration URLs, NODENAME may
be set to _local, to interact with the local node’s configuration.

See also:

Node Management

Hashing Passwords

Seeing the plain-text password is scary, isn’t it? No worries, CouchDB doesn’t show the plain-text password
anywhere. It gets hashed right away. Go ahead and look at your local.ini file now. You’ll see that CouchDB
has rewritten the plain text passwords so they are hashed:

[admins]

admin = -pbkdf2-71c01cb429088aclale95£3482202622dcle53fe,
—226701bece4ae®fc9a373a5e02b£f5d07, 10

anna = -pbkdf2-2d86831c82b440b8887169bd2eebb356821d621b,
—5e11b9a9228414ab92541beeeach£f125,10

The hash is that big, ugly, long string that starts out with -pbkdf2-.

To compare a plain-text password during authentication with the stored hash, the hashing algorithm is run and the
resulting hash is compared to the stored hash. The probability of two identical hashes for different passwords is
too insignificant to mention (c.f. Bruce Schneier). Should the stored hash fall into the hands of an attacker, it is,
by current standards, way too inconvenient (i.e., it’d take a lot of money and time) to find the plain-text password
from the hash.

When CouchDB starts up, it reads a set of .ini files with config settings. It loads these settings into an internal
data store (not a database). The config API lets you read the current configuration as well as change it and create
new entries. CouchDB writes any changes back to the .ini files.

The .1ini files can also be edited by hand when CouchDB is not running. Instead of creating the admin user as
we showed previously, you could have stopped CouchDB, opened your local.ini, added anna = secret to the
admins, and restarted CouchDB. Upon reading the new line from local.ini, CouchDB would run the hashing
algorithm and write back the hash to 1ocal . ini, replacing the plain-text password — just as it did for our original
admin user. To make sure CouchDB only hashes plain-text passwords and not an existing hash a second time, it
prefixes the hash with -pbkdf2-, to distinguish between plain-text passwords and PBKDF2 hashed passwords.
This means your plain-text password can’t start with the characters -pbkdf2-, but that’s pretty unlikely to begin
with.

Basic Authentication

CouchDB will not allow us to create new databases unless we give the correct admin user credentials. Let’s verify:

> HOST="http://127.0.0.1:5984"
> curl -X PUT $HOST/somedatabase

{"error":"unauthorized", "reason":"You are not a server admin."}

That looks about right. Now we try again with the correct credentials:

20 Chapter 1. Introduction

http://en.wikipedia.org/wiki/Bruce_Schneier
http://en.wikipedia.org/wiki/PBKDF2

Apache CouchDB®, Release 3.3.3

> HOST="http://anna:secret@127.0.0.1:5984"
> curl -X PUT $HOST/somedatabase
{"ok":true}

If you have ever accessed a website or FTP server that was password-protected, the username : password@ URL
variant should look familiar.

If you are security conscious, the missing s in http:// will make you nervous. We’re sending our password to
CouchDB in plain text. This is a bad thing, right? Yes, but consider our scenario: CouchDB listens on 127.0.0.1
on a development box that we're the sole user of. Who could possibly sniff our password?

If you are in a production environment, however, you need to reconsider. Will your CouchDB instance communicate
over a public network? Even a LAN shared with other collocation customers is public. There are multiple ways to
secure communication between you or your application and CouchDB that exceed the scope of this documentation.
CouchDB as of version /./.0 comes with SSL built in.

See also:

Basic Authentication API Reference

Cookie Authentication

Basic authentication that uses plain-text passwords is nice and convenient, but not very secure if no extra measures
are taken. It is also a very poor user experience. If you use basic authentication to identify admins, your applica-
tion’s users need to deal with an ugly, unstylable browser modal dialog that says non-professional at work more
than anything else.

To remedy some of these concerns, CouchDB supports cookie authentication. With cookie authentication your
application doesn’t have to include the ugly login dialog that the users’ browsers come with. You can use a regular
HTML form to submit logins to CouchDB. Upon receipt, CouchDB will generate a one-time token that the client
can use in its next request to CouchDB. When CouchDB sees the token in a subsequent request, it will authenticate
the user based on the token without the need to see the password again. By default, a token is valid for 10 minutes.

To obtain the first token and thus authenticate a user for the first time, the username and password must be sent to
the _session API. The API is smart enough to decode HTML form submissions, so you don’t have to resort to any
smarts in your application.

If you are not using HTML forms to log in, you need to send an HTTP request that looks as if an HTML form
generated it. Luckily, this is super simple:

> HOST="http://127.0.0.1:5984"

> curl -vX POST $HOST/_session \
-H 'Content-Type:application/x-www-form-urlencoded' \
-d 'name=annad&password=secret'

CouchDB replies, and we’ll give you some more detail:

< HTTP/1.1 200 OK

< Set-Cookie: AuthSession=YW5uYTo®QUIzOTdFQjrC4ipN-D-53hwls]epVzcVxnriEw;
< Version=1; Path=/; HttpOnly

> ...

<

{"ok":true}

A 200 OK response code tells us all is well, a Set-Cookie header includes the token we can use for the next request,
and the standard JSON response tells us again that the request was successful.

Now we can use this token to make another request as the same user without sending the username and password
again:

1.5. Security 21

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc2109#section-4.2.2

Apache CouchDB®, Release 3.3.3

> curl -vX PUT $HOST/mydatabase \
--cookie AuthSession=YW5uYToO®QUIzOTdFQjrC4ipN-D-53hwls]epVzcVxnriEw \
-H "X-CouchDB-WWW-Authenticate: Cookie" \
-H "Content-Type:application/x-www-form-urlencoded"

{"ok":true}

You can keep using this token for 10 minutes by default. After 10 minutes you need to authenticate your user again.
The token lifetime can be configured with the timeout (in seconds) setting in the chttpd_auth configuration section.

See also:

Cookie Authentication API Reference

1.5.2 Authentication Database

You may already note that CouchDB administrators are defined within the config file and are wondering if regular
users are also stored there. No, they are not. CouchDB has a special authentication database, named _users by
default, that stores all registered users as JSON documents.

This special database is a system database. This means that while it shares the common database API, there are
some special security-related constraints applied. Below is a list of how the authentication database is different
from the other databases.

* Only administrators may browse list of all documents (GET /_users/_all_docs)

* Only administrators may listen to changes feed (GET /_users/_changes)

* Only administrators may execute design functions like views.

* There is a special design document _auth that cannot be modified

» Every document except the design documents represent registered CouchDB users and belong to them

* By default, the _security settings of the _users database disallow users from accessing or modifying
documents

Note: Settings can be changed so that users do have access to the _users database, but even then they may only
access (GET /_users/org.couchdb.user:Jan) or modify (PUT /_users/org.couchdb.user:Jan) docu-
ments that they own. This will not be possible in CouchDB 4.0.

These draconian rules are necessary since CouchDB cares about its users’ personal information and will not disclose
it to just anyone. Often, user documents contain system information like login, password hash and roles, apart from
sensitive personal information like real name, email, phone, special internal identifications and more. This is not
information that you want to share with the World.

Users Documents
Each CouchDB user is stored in document format. These documents contain several mandatory fields, that
CouchDB needs for authentication:

e _id (string): Document ID. Contains user’s login with special prefix Why the org.couchdb.user: prefix?

* derived_key (string): PBKDF2 key derived from salt/iterations.

* name (string): User’s name aka login. Immutable e.g. you cannot rename an existing user - you have to
create new one

* roles (array of string): List of user roles. CouchDB doesn’t provide any built-in roles, so you’re free to
define your own depending on your needs. However, you cannot set system roles like _admin there. Also,
only administrators may assign roles to users - by default all users have no roles

22 Chapter 1. Introduction

http://en.wikipedia.org/wiki/PBKDF2

Apache CouchDB®, Release 3.3.3

» password (string): A plaintext password can be provided, but will be replaced by hashed fields before the
document is actually stored.

» password_sha (string): Hashed password with salt. Used for simple password_scheme
» password_scheme (string): Password hashing scheme. May be simple or pbkdf2
* salt (string): Hash salt. Used for both simple and pbkdf2 password_scheme options.

* iterations (integer): Number of iterations to derive key, used for pbkdf2 password_scheme See the con-
figuration API:: for details.

* type (string): Document type. Constantly has the value user

Additionally, you may specify any custom fields that relate to the target user.

Why the org.couchdb.user: prefix?

The reason there is a special prefix before a user’s login name is to have namespaces that users belong to. This
prefix is designed to prevent replication conflicts when you try merging two or more _user databases.

For current CouchDB releases, all users belong to the same org. couchdb.user namespace and this cannot be
changed. This may be changed in future releases.

Creating a New User

Creating a new user is a very trivial operation. You just need to do a PUT request with the user’s data to CouchDB.
Let’s create a user with login jan and password apple:

curl -X PUT http://localhost:5984/_users/org.couchdb.user:jan \
-H "Accept: application/json" \
-H "Content-Type: application/json" \
-d "{"name": "jan", "password": "apple", "roles": [], "type": "user"}'

This curl command will produce the following HTTP request:

PUT /_users/org.couchdb.user:jan HTTP/1.1
Accept: application/json

Content-Length: 62

Content-Type: application/json

Host: localhost:5984

User-Agent: curl/7.31.0

And CouchDB responds with:

HTTP/1.1 201 Created

Cache-Control: must-revalidate

Content-Length: 83

Content-Type: application/json

Date: Fri, 27 Sep 2013 07:33:28 GMT

ETag: "1-e0ebfb84005b920488fc7a8cc5470ccO"

Location: http://localhost:5984/ users/org.couchdb.user: jan
Server: CouchDB (Erlang OTP)

{"ok":true,"id":"org.couchdb.user:jan","rev":"1-e0ebfb84005b920488fc7a8cc5470ccO®"}

The document was successfully created! The user jan should now exist in our database. Let’s check if this is true:

curl -X POST http://localhost:5984/_session -d 'name=jan&password=apple’

CouchDB should respond with:

1.5. Security 23

https://tools.ietf.org/html/rfc7231#section-4.3.4

Apache CouchDB®, Release 3.3.3

{"ok":true, "name":"jan","roles":[]1}

This means that the username was recognized and the password’s hash matches with the stored one. If we specify
an incorrect login and/or password, CouchDB will notify us with the following error message:

{"error":"unauthorized","reason":"Name or password is incorrect."}

Password Changing

Let’s define what is password changing from the point of view of CouchDB and the authentication database. Since
“users” are “documents”, this operation is just updating the document with a special field password which con-
tains the plain text password. Scared? No need to be. The authentication database has a special internal hook
on document update which looks for this field and replaces it with the secured hash depending on the chosen
password_scheme.

Summarizing the above process - we need to get the document’s content, add the password field with the new
password in plain text and then store the JSON result to the authentication database.

curl -X GET http://localhost:5984/_users/org.couchdb.user: jan

{
"_id": "org.couchdb.user:jan",
"_rev': "1-e0ebfb84005b920488fc7a8cc5470ccO",
"derived_key": "e579375db0e0®c6a6fc79cd9e36a36859£71575c3",
"iterations": 10,
"name": "jan",
"password_scheme": "pbkdf2",
"roles": [1,
"salt": "1112283cf988a34£124200a050d308al",
"type": "user"

}

Here is our user’s document. We may strip hashes from the stored document to reduce the amount of posted data:

curl -X PUT http://localhost:5984/_users/org.couchdb.user:jan \
-H "Accept: application/json" \
-H "Content-Type: application/json" \
-H "If-Match: 1-e0ebfb84005b920488fc7a8cc5470ccO®" \

-d "{"name":"jan", "roles":[], "type":"user", "password":"orange"}'

{"ok":true,"id":"org.couchdb.user:jan","rev":"2-ed293d3a0ae09f0c624f10538ef33c6f"}

Updated! Now let’s check that the password was really changed:

curl -X POST http://localhost:5984/_session -d 'name=jan&password=apple’

CouchDB should respond with:

{"error":"unauthorized","reason":"Name or password is incorrect."}

Looks like the password apple is wrong, what about orange?

curl -X POST http://localhost:5984/_session -d 'name=jan&password=orange'

CouchDB should respond with:

24 Chapter 1. Introduction

Apache CouchDB®, Release 3.3.3

{"ok":true, "name":"jan","roles":[]1}

Hooray! You may wonder why this was so complex - we need to retrieve user’s document, add a special field to it,
and post it back.

Note: There is no password confirmation for API request: you should implement it in your application layer.

1.5.3 Authorization

Now that you have a few users who can log in, you probably want to set up some restrictions on what actions they
can perform based on their identity and their roles. Each database on a CouchDB server can contain its own set
of authorization rules that specify which users are allowed to read and write documents, create design documents,
and change certain database configuration parameters. The authorization rules are set up by a server admin and
can be modified at any time.

Database authorization rules assign a user into one of two classes:

e members, who are allowed to read all documents and create and modify any document except for design
documents.

* admins, who can read and write all types of documents, modify which users are members or admins, and set
certain per-database configuration options.

Note that a database admin is not the same as a server admin — the actions of a database admin are restricted to a
specific database.

All databases are created as admin-only by default. That is, only database admins may read or write. The default
behavior can be configured with the [couchdb] default_security option. If you set that option to everyone,
HTTP requests that have no authentication credentials or have credentials for a normal user are treated as members,
and those with server admin credentials are treated as database admins.

You can also modify the permissions after the database is created by modifying the security document in the
database:

> curl -X PUT http://localhost:5984/mydatabase/_security \

-Uu anna:secret \

-H "Content-Type: application/json" \

-d '"{"admins": { "names": [], "roles": [] }, "members": { "names": ["jan"],
~"roles": [] } }'

The HTTP request to create or update the _security document must contain the credentials of a server admin.
CouchDB will respond with:

{"ok":true}

The database is now secured against anonymous reads and writes:

> curl http://localhost:5984/mydatabase/

{"error":"unauthorized","reason":"You are not authorized to access this db."}

You declared user “jan” as a member in this database, so he is able to read and write normal documents:

> curl -u jan:apple http://localhost:5984/mydatabase/

{"db_name" : "mydatabase","doc_count":1,"doc_del_count":0,"update_seq":3,"purge_seq":0,
"compact_running":false,"sizes":{"active":272,"disk":12376,"external":350},

"instance_start_time":"0","disk_format_version":6,"committed_update_seq":3}

1.5. Security 25

Apache CouchDB®, Release 3.3.3

If Jan attempted to create a design doc, however, CouchDB would return a 401 Unauthorized error because the
username “jan” is not in the list of admin names and the /_users/org.couchdb.user:jan document doesn’t contain
a role that matches any of the declared admin roles. If you want to promote Jan to an admin, you can update the
security document to add “jan” to the names array under admin. Keeping track of individual database admin
usernames is tedious, though, so you would likely prefer to create a database admin role and assign that role to the
org.couchdb.user:jan user document:

> curl -X PUT http://localhost:5984/mydatabase/_security \

-Uu anna:secret \

-H "Content-Type: application/json" \

-d "{"admins": { "names": [], "roles": ["mydatabase_admin"] }, "members": {
—~'"names": [], "roles": [] } }'

See the _security document reference page for additional details about specifying database members and admins.

1.6 Getting Started

In this document, we’ll take a quick tour of CouchDB’s features. We’ll create our first document and experiment
with CouchDB views.

1.6.1 All Systems Are Go!

We’ll have a very quick look at CouchDB’s bare-bones Application Programming Interface (API) by using the
command-line utility curl. Please note that this is not the only way of talking to CouchDB. We will show you
plenty more throughout the rest of the documents. What’s interesting about curl is that it gives you control over
raw HTTP requests, and you can see exactly what is going on “underneath the hood” of your database.

Make sure CouchDB is still running, and then do:

curl http://127.0.0.1:5984/

This issues a GET request to your newly installed CouchDB instance.

The reply should look something like:

{

"couchdb": "Welcome",
"version": "3.0.0",
"git_sha": "83bdcf693",
"uuid": "56f16e7c93ff4a2dc20eb6acc7000b71",
"features": [
"access-ready",
"partitioned",
"pluggable-storage-engines",
"reshard",
"scheduler"
1,
"vendor": {
"name": "The Apache Software Foundation"
}
}

Not all that spectacular. CouchDB is saying “hello” with the running version number.

Next, we can get a list of databases:

curl -X GET http://admin:password@127.0.0.1:5984/_all_dbs

26 Chapter 1. Introduction

Apache CouchDB®, Release 3.3.3

All we added to the previous request is the _all_dbs string, and our admin user name and password (set when
installing CouchDB).

The response should look like:

["_replicator"," _users"]

Note: In case this returns an empty Array for you, it means you haven’t finished installation correctly. Please refer
to Setup for further information on this.

For the purposes of this example, we’ll not be showing the system databases past this point. In your installation,
any time you GET /_all_dbs, you should see the system databases in the list, too.

Oh, that’s right, we didn’t create any user databases yet!

Note: The curl command issues GET requests by default. You can issue POST requests using curl -X POST.
To make it easy to work with our terminal history, we usually use the -X option even when issuing GET requests.
If we want to send a POST next time, all we have to change is the method.

HTTP does a bit more under the hood than you can see in the examples here. If you’re interested in every last detail
that goes over the wire, pass in the -v option (e.g., curl -vX GET), which will show you the server curl tries to
connect to, the request headers it sends, and response headers it receives back. Great for debugging!

Let’s create a database:

curl -X PUT http://admin:password@127.0.0.1:5984/baseball

CouchDB will reply with:

{"ok":true}

Retrieving the list of databases again shows some useful results this time:

curl -X GET http://admin:password@127.0.0.1:5984/_all_dbs

["baseball"]

Note: We should mention JavaScript Object Notation (JSON) here, the data format CouchDB speaks. JSON
is a lightweight data interchange format based on JavaScript syntax. Because JSON is natively compatible with
JavaScript, your web browser is an ideal client for CouchDB.

Brackets ([]) represent ordered lists, and curly braces ({}) represent key/value dictionaries. Keys must be strings,
delimited by quotes ("), and values can be strings, numbers, booleans, lists, or key/value dictionaries. For a more
detailed description of JSON, see Appendix E, JSON Primer.

Let’s create another database:

curl -X PUT http://admin:password@127.0.0.1:5984/baseball

CouchDB will reply with:

{"error":"file_exists","reason":"The database could not be created,
the file already exists."}

We already have a database with that name, so CouchDB will respond with an error. Let’s try again with a different
database name:

1.6. Getting Started 27

Apache CouchDB®, Release 3.3.3

curl -X PUT http://admin:password@127.0.0.1:5984/plankton

CouchDB will reply with:

{"ok":true}

Retrieving the list of databases yet again shows some useful results:

curl -X GET http://admin:password@127.0.0.1:5984/_all_dbs

CouchDB will respond with:

["baseball”, "plankton"]

To round things off, let’s delete the second database:

curl -X DELETE http://admin:password@127.0.0.1:5984/plankton

CouchDB will reply with:

{"ok":true}

The list of databases is now the same as it was before:

curl -X GET http://admin:password@127.0.0.1:5984/_all_dbs

CouchDB will respond with:

["baseball"]

For brevity, we’ll skip working with documents, as the next section covers a different and potentially easier way of
working with CouchDB that should provide experience with this. As we work through the example, keep in mind
that “under the hood” everything is being done by the application exactly as you have been doing here manually.
Everything is done using GET, PUT, POST, and DELETE with a URI.

1.6.2 Welcome to Fauxton

After having seen CouchDB’s raw API, let’s get our feet wet by playing with Fauxton, the built-in administration
interface. Fauxton provides full access to all of CouchDB’s features and makes it easy to work with some of
the more complex ideas involved. With Fauxton we can create and destroy databases; view and edit documents;
compose and run MapReduce views; and trigger replication between databases.

To load Fauxton in your browser, visit:

http://127.0.0.1:5984/_utils/

and log in when prompted with your admin password.

In later documents, we’ll focus on using CouchDB from server-side languages such as Ruby and Python. As such,
this document is a great opportunity to showcase an example of natively serving up a dynamic web application using
nothing more than CouchDB’s integrated web server, something you may wish to do with your own applications.

The first thing we should do with a fresh installation of CouchDB is run the test suite to verify that everything is
working properly. This assures us that any problems we may run into aren’t due to bothersome issues with our
setup. By the same token, failures in the Fauxton test suite are a red flag, telling us to double-check our installation
before attempting to use a potentially broken database server, saving us the confusion when nothing seems to be
working quite like we expect!

To validate your installation, click on the Verify link on the left-hand side, then press the green Verify Installation
button. All tests should pass with a check mark. If any fail, re-check your installation steps.

28 Chapter 1. Introduction

Apache CouchDB®, Release 3.3.3

1.6.3 Your First Database and Document

Creating a database in Fauxton is simple. From the overview page, click “Create Database.” When asked for a
name, enter hello-world and click the Create button.

After your database has been created, Fauxton will display a list of all its documents. This list will start out empty,
so let’s create our first document. Click the plus sign next to “All Documents” and select the “New Doc” link.
CouchDB will generate a UUID for you.

For demoing purposes, having CouchDB assign a UUID is fine. When you write your first programs, we recom-
mend assigning your own UUIDs. If you rely on the server to generate the UUID and you end up making two POST
requests because the first POST request bombed out, you might generate two docs and never find out about the first
one because only the second one will be reported back. Generating your own UUIDs makes sure that you’ll never
end up with duplicate documents.

Fauxton will display the newly created document, with its _id field. To create a new field, simply use the editor to
write valid JSON. Add a new field by appending a comma to the _id value, then adding the text:

"hello": "my new value"

Click the green Create Document button to finalize creating the document.
You can experiment with other JSON values; e.g., [1, 2, "c"]or {"foo": "bar"}.

You’ll notice that the document’s _rev has been added. We’ll go into more detail about this in later documents, but
for now, the important thing to note is that _rev acts like a safety feature when saving a document. As long as you
and CouchDB agree on the most recent _rev of a document, you can successfully save your changes.

For clarity, you may want to display the contents of the document in the all document view. To enable this, from
the upper-right corner of the window, select Options, then check the Include Docs option. Finally, press the Run
Query button. The full document should be displayed along with the _id and _rev values.

1.6.4 Running a Mango Query

Now that we have stored documents successfully, we want to be able to query them. The easiest way to do this in
CouchDB is running a Mango Query. There are always two parts to a Mango Query: the index and the selector.

The index specifies which fields we want to be able to query on, and the selector includes the actual query parameters
that define what we are looking for exactly.

Indexes are stored as rows that are kept sorted by the fields you specify. This makes retrieving data from a range
of keys efficient even when there are thousands or millions of rows.

Before we can run an example query, we’ll need some data to run it on. We’ll create documents with information
about movies. Let’s create documents for three movies. (Allow CouchDB to generate the _id and _rev fields.)
Use Fauxton to create documents that have a final JSON structure that look like this:

{
"_id": "00a271787£89c0ef2e10e88a0cO001f4",
"type": "movie",
"title": "My Neighbour Totoro",
"year": 1988,
"director": "miyazaki",
"rating": 8.2
}
{
"_id": "00a271787£89c0ef2e10e88a0cO003f0",
"type": "movie",
"title": "Kikis Delivery Service",
"year": 1989,

(continues on next page)

1.6. Getting Started 29

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"director": "miyazaki",
"rating": 7.8

"_id": "00a271787£89c0ef2e10e88a0c00048b",
"type": "movie",

"title": "Princess Mononoke",

"year": 1997,

"director": "miyazaki",

"rating": 8.4

Now we want to be able to find a movie by its release year, we need to create a Mango Index. To do this, go to “Run
A Query with Mango” in the Database overview. Then click on “manage indexes”, and change the index field on
the left to look like this:

{
"index": {
"fields": [
"year"
]
1,
"name": "year-json-index",
"type": "json"
}

This defines an index on the field year and allows us to send queries for documents from a specific year.

Next, click on “edit query” and change the Mango Query to look like this:

{
"selector": {
"year": {
"$eq": 1988
}
}
}

Then click on ”Run Query”.

The result should be a single result, the movie “My Neighbour Totoro”” which has the year value of 1988. $eq here
stands for “equal”.

Note: Note that if you skip adding the index, the query will still return the correct results, although you will
see a warning about not using a pre-existing index. Not using an index will work fine on small databases and is
acceptable for testing out queries in development or training, but we very strongly discourage doing this in any
other case, since an index is absolutely vital to good query performance.

You can also query for all movies during the 1980s, with this selector:

{
"selector": {
"year": {
"$1t": 1990,
"$gte": 1980

(continues on next page)

30 Chapter 1. Introduction

Apache CouchDB®, Release 3.3.3

(continued from previous page)

The result are the two movies from 1988 and 1989. $1t here means “lower than”, and $gte means “greater than
or equal to”. The latter currently doesn’t have any effect, given that all of our movies are more recent than 1980,
but this makes the query future-proof and allows us to add older movies later.

1.6.5 Triggering Replication

Fauxton can trigger replication between two local databases, between a local and remote database, or even between
two remote databases. We’ll show you how to replicate data from one local database to another, which is a simple
way of making backups of your databases as we’re working through the examples.

First we’ll need to create an empty database to be the target of replication. Return to the Databases overview and
create a database called hello-replication. Now click “Replication” in the sidebar and choose hello-world
as the source and hello-replication as the target. Click “Replicate” to replicate your database.

To view the result of your replication, click on the Databases tab again. You should see the hello-replication
database has the same number of documents as the hello-world database, and it should take up roughly the same
size as well.

Note: For larger databases, replication can take much longer. It is important to leave the browser window open
while replication is taking place. As an alternative, you can trigger replication via curl or some other HTTP client
that can handle long-running connections. If your client closes the connection before replication finishes, you’ll
have to retrigger it. Luckily, CouchDB’s replication can take over from where it left off instead of starting from
scratch.

1.6.6 Wrapping Up

Now that you’ve seen most of Fauxton’s features, you’ll be prepared to dive in and inspect your data as we build
our example application in the next few documents. Fauxton’s pure JavaScript approach to managing CouchDB
shows how it’s possible to build a fully featured web application using only CouchDB’s HTTP API and integrated
web server.

But before we get there, we’ll have another look at CouchDB’s HTTP API — now with a magnifying glass. Let’s
curl up on the couch and relax.

1.7 The Core API

This document explores the CouchDB in minute detail. It shows all the nitty-gritty and clever bits. We show you
best practices and guide you around common pitfalls.

We start out by revisiting the basic operations we ran in the previous document Getting Started, looking behind
the scenes. We also show what Fauxton needs to do behind its user interface to give us the nice features we saw
earlier.

This document is both an introduction to the core CouchDB API as well as a reference. If you can’t remember how
to run a particular request or why some parameters are needed, you can always come back here and look things up
(we are probably the heaviest users of this document).

While explaining the API bits and pieces, we sometimes need to take a larger detour to explain the reasoning for a
particular request. This is a good opportunity for us to tell you why CouchDB works the way it does.

The API can be subdivided into the following sections. We’ll explore them individually:

1.7. The Core API 31

Apache CouchDB®, Release 3.3.3

e Server
e Databases
e Documents

* Replication

* Wrapping Up

1.7.1 Server

This one is basic and simple. It can serve as a sanity check to see if CouchDB is running at all. It can also act as a
safety guard for libraries that require a certain version of CouchDB. We’re using the curl utility again:

curl http://127.0.0.1:5984/

CouchDB replies, all excited to get going:

{
"couchdb": "Welcome",
"version": "3.0.0",
"git_sha": "83bdcf693",
"uuid": "56f16e7c93ff4a2dc20eb6acc7000b71",
"features": [
"access-ready",
"partitioned",
"pluggable-storage-engines",
"reshard",
"scheduler"
1,
"vendor": {
"name": "The Apache Software Foundation"

You get back a JSON string, that, if parsed into a native object or data structure of your programming language,
gives you access to the welcome string and version information.

This is not terribly useful, but it illustrates nicely the way CouchDB behaves. You send an HTTP request and you
receive a JSON string in the HTTP response as a result.

1.7.2 Databases

Now let’s do something a little more useful: create databases. For the strict, CouchDB is a database management
system (DMS). That means it can hold multiple databases. A database is a bucket that holds “related data”. We’ll
explore later what that means exactly. In practice, the terminology is overlapping — often people refer to a DMS as
“a database” and also a database within the DMS as “a database.” We might follow that slight oddity, so don’t get
confused by it. In general, it should be clear from the context if we are talking about the whole of CouchDB or a
single database within CouchDB.

Now let’s make one! We want to store our favorite music albums, and we creatively give our database the name
albums. Note that we’re now using the -X option again to tell curl to send a PUT request instead of the default GET
request:

curl -X PUT http://admin:password@127.0.0.1:5984/albums

CouchDB replies:

32 Chapter 1. Introduction

http://curl.haxx.se/
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.1

Apache CouchDB®, Release 3.3.3

{"ok":true}

That’s it. You created a database and CouchDB told you that all went well. What happens if you try to create a
database that already exists? Let’s try to create that database again:

curl -X PUT http://admin:password@127.0.0.1:5984/albums

CouchDB replies:

{"error":"file_exists","reason":"The database could not be created, the file already.
—exists."}

We get back an error. This is pretty convenient. We also learn a little bit about how CouchDB works. CouchDB
stores each database in a single file. Very simple.

Let’s create another database, this time with curl’s -v (for “verbose”) option. The verbose option tells curl to show
us not only the essentials — the HTTP response body — but all the underlying request and response details:

curl -vX PUT http://admin:password@127.0.0.1:5984/albums-backup

curl elaborates:

“ About to connect() to 127.0.0.1 port 5984 (#0)
Trying 127.0.0.1... connected
“ Connected to 127.0.0.1 (127.0.0.1) port 5984 (#0)
> PUT /albums-backup HTTP/1.1
> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3 OpenSSL/0.9.71.
~zlib/1.2.3
Host: 127.0.0.1:5984
Accept: */*

HTTP/1.1 201 Created

Server: CouchDB (Erlang/0TP)

Date: Sun, 05 Jul 2009 22:48:28 GMT
Content-Type: text/plain;charset=utf-8
Content-Length: 12

Cache-Control: must-revalidate

A~ A ANANAN AN A ANV VIV

"ok":true}
“ Connection #0 to host 127.0.0.1 left intact
* Closing connection #0

What a mouthful. Let’s step through this line by line to understand what’s going on and find out what’s important.
Once you’ve seen this output a few times, you’ll be able to spot the important bits more easily.

* About to connect() to 127.0.0.1 port 5984 (#0)

This is curl telling us that it is going to establish a TCP connection to the CouchDB server we specified in our
request URI. Not at all important, except when debugging networking issues.

Trying 127.0.0.1... connected
“* Connected to 127.0.0.1 (127.0.0.1) port 5984 (#0)

curl tells us it successfully connected to CouchDB. Again, not important if you aren’t trying to find problems with
your network.

The following lines are prefixed with > and < characters. The > means the line was sent to CouchDB verbatim
(without the actual >). The < means the line was sent back to curl by CouchDB.

1.7. The Core API 33

Apache CouchDB®, Release 3.3.3

> PUT /albums-backup HTTP/1.1

This initiates an HTTP request. Its method is PUT, the URI is /albums-backup, and the HTTP version is HTTP/
1.1. There is also HTTP/1.0, which is simpler in some cases, but for all practical reasons you should be using
HTTP/1.1.

Next, we see a number of request headers. These are used to provide additional details about the request to
CouchDB.

> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3 OpenSSL/0.9.71.
—z1ib/1.2.3

The User-Agent header tells CouchDB which piece of client software is doing the HTTP request. We don’t learn
anything new: it’s curl. This header is often useful in web development when there are known errors in client
implementations that a server might want to prepare the response for. It also helps to determine which platform a
user is on. This information can be used for technical and statistical reasons. For CouchDB, the User-Agent header
is irrelevant.

> Host: 127.0.0.1:5984

The Host header is required by HTTP 1. 1. It tells the server the hostname that came with the request.

> Accept: */*

The Accept header tells CouchDB that curl accepts any media type. We’ll look into why this is useful a little later.

>

An empty line denotes that the request headers are now finished and the rest of the request contains data we’re
sending to the server. In this case, we’re not sending any data, so the rest of the curl output is dedicated to the
HTTP response.

< HTTP/1.1 201 Created

The first line of CouchDB’s HTTP response includes the HTTP version information (again, to acknowledge that
the requested version could be processed), an HTTP status code, and a status code message. Different requests
trigger different response codes. There’s a whole range of them telling the client (curl in our case) what effect the
request had on the server. Or, if an error occurred, what kind of error. RFC 2616 (the HTTP 1.1 specification)
defines clear behavior for response codes. CouchDB fully follows the RFC.

The 201 Created status code tells the client that the resource the request was made against was successfully created.
No surprise here, but if you remember that we got an error message when we tried to create this database twice,
you now know that this response could include a different response code. Acting upon responses based on response
codes is a common practice. For example, all response codes of 400 Bad Request or larger tell you that some error
occurred. If you want to shortcut your logic and immediately deal with the error, you could just check a >= 400
response code.

< Server: CouchDB (Erlang/0TP)

The Server header is good for diagnostics. It tells us which CouchDB version and which underlying Erlang version
we are talking to. In general, you can ignore this header, but it is good to know it’s there if you need it.

< Date: Sun, 05 Jul 2009 22:48:28 GMT

The Date header tells you the time of the server. Since client and server time are not necessarily synchronized, this
header is purely informational. You shouldn’t build any critical application logic on top of this!

< Content-Type: text/plain;charset=utf-8

34 Chapter 1. Introduction

https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-5.5.3
https://tools.ietf.org/html/rfc7230#section-5.4
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc2616.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-7.4.2
https://tools.ietf.org/html/rfc7231#section-7.1.1.2

Apache CouchDB®, Release 3.3.3

The Content-Type header tells you which MIME type the HTTP response body is and its encoding. We already
know CouchDB returns JSON strings. The appropriate Content-Type header is application/json. Why do we
see text/plain? This is where pragmatism wins over purity. Sending an application/json Content-Type
header will make a browser offer you the returned JSON for download instead of just displaying it. Since it is
extremely useful to be able to test CouchDB from a browser, CouchDB sends a text/plain content type, so all
browsers will display the JSON as text.

Note: There are some extensions that make your browser JSON-aware, but they are not installed by default. For
more information, look at the popular JSONView extension, available for both Firefox and Chrome.

Do you remember the Accept request header and how it is set to */* to express interest in any MIME type? If
you send Accept: application/json in your request, CouchDB knows that you can deal with a pure JSON
response with the proper Content-Type header and will use it instead of text/plain.

< Content-Length: 12

The Content-Length header simply tells us how many bytes the response body has.

< Cache-Control: must-revalidate

This Cache-Control header tells you, or any proxy server between CouchDB and you, not to cache this response.

<

This empty line tells us we’re done with the response headers and what follows now is the response body.

{"ok":true}

We’ve seen this before.

* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0

The last two lines are curl telling us that it kept the TCP connection it opened in the beginning open for a moment,
but then closed it after it received the entire response.

Throughout the documents, we’ll show more requests with the -v option, but we’ll omit some of the headers we’ve
seen here and include only those that are important for the particular request.

Creating databases is all fine, but how do we get rid of one? Easy — just change the HTTP method:

> curl -vX DELETE http://admin:password@127.0.0.1:5984/albums-backup

This deletes a CouchDB database. The request will remove the file that the database contents are stored in. There
is no “Are you sure?” safety net or any “Empty the trash” magic you’ve got to do to delete a database. Use this
command with care. Your data will be deleted without a chance to bring it back easily if you don’t have a backup

copy.

This section went knee-deep into HTTP and set the stage for discussing the rest of the core CouchDB API. Next
stop: documents.

1.7. The Core API 35

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://jsonview.com/
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7230#section-3.3.2
https://tools.ietf.org/html/rfc7234#section-5.2

Apache CouchDB®, Release 3.3.3

1.7.3 Documents

Documents are CouchDB’s central data structure. The idea behind a document is, unsurprisingly, that of a real-
world document — a sheet of paper such as an invoice, a recipe, or a business card. We already learned that CouchDB
uses the JSON format to store documents. Let’s see how this storing works at the lowest level.

Each document in CouchDB has an ID. This ID is unique per database. You are free to choose any string to be
the ID, but for best results we recommend a UUID (or GUID), i.e., a Universally (or Globally) Unique IDentifier.
UUIDs are random numbers that have such a low collision probability that everybody can make thousands of UUIDs
aminute for millions of years without ever creating a duplicate. This is a great way to ensure two independent people
cannot create two different documents with the same ID. Why should you care what somebody else is doing? For
one, that somebody else could be you at a later time or on a different computer; secondly, CouchDB replication
lets you share documents with others and using UUIDs ensures that it all works. But more on that later; let’s make
some documents:

curl -X PUT http://admin:password@127.0.0.1:5984/albums/
,6e1295ed6c29495e54cc05947£f18c8af -d '{"title":"There is Nothing Left to Lose",
—"artist":"Foo Fighters"}'

CouchDB replies:

{"ok":true,"id":"6e1295ed6c29495e54cc05947f18c8af","rev":"1-2902191555"}

The curl command appears complex, but let’s break it down. First, -X PUT tells curl to make a PUT request. It is
followed by the URL that specifies your CouchDB IP address and port. The resource part of the URL /albums/
6e1295ed6c29495e54cc05947f18c8af specifies the location of a document inside our albums database. The
wild collection of numbers and characters is a UUID. This UUID is your document’s ID. Finally, the -d flag tells
curl to use the following string as the body for the PUT request. The string is a simple JSON structure including
title and artist attributes with their respective values.

Note: If you don’t have a UUID handy, you can ask CouchDB to give you one (in fact, that is what we did just
now without showing you). Simply send a GET /_uuids request:

curl -X GET http://127.0.0.1:5984/_uuids

CouchDB replies:

{"uuids":["6e1295ed6c29495e54cc05947£f18c8af"]}

Voila, a UUID. If you need more than one, you can pass in the 7count=10 HTTP parameter to request 10 UUIDs,
or really, any number you need.

To double-check that CouchDB isn’t lying about having saved your document (it usually doesn’t), try to retrieve it
by sending a GET request:

curl -X GET http://admin:password@127.0.0.1:5984/albums/
—6e1295ed6c29495e54cc05947f18c8af

We hope you see a pattern here. Everything in CouchDB has an address, a URI, and you use the different HTTP
methods to operate on these URIs.

CouchDB replies:

{"_id":"6e1295ed6c29495e54cc05947£f18c8af"," _rev":"1-2902191555","title":"There is.

—Nothing Left to Lose","artist":"Foo Fighters"}

This looks a lot like the document you asked CouchDB to save, which is good. But you should notice that CouchDB
added two fields to your JSON structure. The first is _id, which holds the UUID we asked CouchDB to save our
document under. We always know the ID of a document if it is included, which is very convenient.

36 Chapter 1. Introduction

http://en.wikipedia.org/wiki/Universally_unique_identifier
http://en.wikipedia.org/wiki/Globally_unique_identifier
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.4

Apache CouchDB®, Release 3.3.3

The second field is _rev. It stands for revision.

Revisions

If you want to change a document in CouchDB, you don’t tell it to go and find a field in a specific document and
insert a new value. Instead, you load the full document out of CouchDB, make your changes in the JSON structure
(or object, when you are doing actual programming), and save the entire new revision (or version) of that document
back into CouchDB. Each revision is identified by a new _rev value.

If you want to update or delete a document, CouchDB expects you to include the _rev field of the revision you
wish to change. When CouchDB accepts the change, it will generate a new revision number. This mechanism
ensures that, in case somebody else made a change without you knowing before you got to request the document
update, CouchDB will not accept your update because you are likely to overwrite data you didn’t know existed. Or
simplified: whoever saves a change to a document first, wins. Let’s see what happens if we don’t provide a _rev
field (which is equivalent to providing a outdated value):

curl -X PUT http://admin:password@127.0.0.1:5984/albums/
—6e1295ed6c29495e54cc05947f18c8af \

-d '"{"title":"There is Nothing Left to Lose","artist":"Foo Fighters","year":"1997
oY

CouchDB replies:

{"error":"conflict","reason":"Document update conflict."}

If you see this, add the latest revision number of your document to the JSON structure:

curl -X PUT http://admin:password@127.0.0.1:5984/albums/
—6e1295ed6c29495e54cc05947f18c8af \
-d "{"_rev":"1-2902191555","title":"There is Nothing Left to Lose","artist":"Foo.

—Fighters","year":"1997"}'

Now you see why it was handy that CouchDB returned that _rev when we made the initial request. CouchDB
replies:

{"ok":true,"id":"6e1295ed6c29495e54cc05947f18c8af", "rev":"2-
—8aff9ee9d06671£fa89c99d20a4b3ae"}

CouchDB accepted your write and also generated a new revision number. The revision number is the MD5 hash of
the transport representation of a document with an N- prefix denoting the number of times a document got updated.
This is useful for replication. See Replication and conflict model for more information.

There are multiple reasons why CouchDB uses this revision system, which is also called Multi-Version Concur-
rency Control (MVCC). They all work hand-in-hand, and this is a good opportunity to explain some of them.

One of the aspects of the HTTP protocol that CouchDB uses is that it is stateless. What does that mean? When
talking to CouchDB you need to make requests. Making a request includes opening a network connection to
CouchDB, exchanging bytes, and closing the connection. This is done every time you make a request. Other
protocols allow you to open a connection, exchange bytes, keep the connection open, exchange more bytes later
— maybe depending on the bytes you exchanged at the beginning — and eventually close the connection. Holding
a connection open for later use requires the server to do extra work. One common pattern is that for the lifetime
of a connection, the client has a consistent and static view of the data on the server. Managing huge amounts of
parallel connections is a significant amount of work. HTTP connections are usually short-lived, and making the
same guarantees is a lot easier. As a result, CouchDB can handle many more concurrent connections.

Another reason CouchDB uses MVCC is that this model is simpler conceptually and, as a consequence, easier to
program. CouchDB uses less code to make this work, and less code is always good because the ratio of defects per
lines of code is static.

The revision system also has positive effects on replication and storage mechanisms, but we’ll explore these later
in the documents.

1.7. The Core API 37

http://en.wikipedia.org/wiki/Multiversion_concurrency_control

Apache CouchDB®, Release 3.3.3

Warning: The terms version and revision might sound familiar (if you are programming without version
control, stop reading this guide right now and start learning one of the popular systems). Using new versions
for document changes works a lot like version control, but there’s an important difference: CouchDB does not
guarantee that older versions are kept around. Don’t use the **_rev™" token in CouchDB as a revision
control system for your documents.

Documents in Detail

Now let’s have a closer look at our document creation requests with the curl -v flag that was helpful when we
explored the database API earlier. This is also a good opportunity to create more documents that we can use in
later examples.

We’ll add some more of our favorite music albums. Get a fresh UUID from the /_uuids resource. If you don’t
remember how that works, you can look it up a few pages back.

curl -vX PUT http://admin:password@127.0.0.1:5984/albums/
—70b50bfa®a4b3aedl1f8aff9e92dcl6ad \
-d "{"title":"Blackened Sky","artist":"Biffy Clyro","year":2002}"'

Note: By the way, if you happen to know more information about your favorite albums, don’t hesitate to add more
properties. And don’t worry about not knowing all the information for all the albums. CouchDB’s schema-less
documents can contain whatever you know. After all, you should relax and not worry about data.

Now with the -v option, CouchDB’s reply (with only the important bits shown) looks like this:

PUT /albums/70b50bfa®a4b3aedlf8aff9e92dcl6a® HTTP/1.1

HTTP/1.1 201 Created
Location: http://127.0.0.1:5984/albums/70b50bfa®adb3aed1f8aff9e92dcl6a®
ETag: "1-e89c99d29d06671fa®adb3ae8aff9e”

AN AN ANV V

<
{"ok":true,"id":"70b50bfaf®a4b3aed1f8aff9e92dc16ad®", "rev":"1-
-»e89¢99d29d06671fal®a4b3ae8aff9e"}

We’re getting back the 201 Created HTTP status code in the response headers, as we saw earlier when we created
a database. The Location header gives us a full URL to our newly created document. And there’s a new header.
An ETag in HTTP-speak identifies a specific version of a resource. In this case, it identifies a specific version (the
first one) of our new document. Sound familiar? Yes, conceptually, an ETag is the same as a CouchDB document
revision number, and it shouldn’t come as a surprise that CouchDB uses revision numbers for ETags. ETags are
useful for caching infrastructures.

Attachments

CouchDB documents can have attachments just like an email message can have attachments. An attachment is
identified by a name and includes its MIME type (or Content-Type) and the number of bytes the attachment con-
tains. Attachments can be any data. It is easiest to think about attachments as files attached to a document. These
files can be text, images, Word documents, music, or movie files. Let’s make one.

Attachments get their own URL where you can upload data. Say we want to add the album artwork to the
6e1295ed6c29495e54cc05947£18c8af document (“There is Nothing Left to Lose”), and let’s also say the art-
work is in a file artwork.jpg in the current directory:

curl -vX PUT http://admin:password@127.0.0.1:5984/albums/
-.6e1295ed6c29495e54cc05947f18c8af/artwork. jpg?rev=2-2739352689 \
--data-binary @artwork.jpg -H "Content-Type:image/jpg"

38 Chapter 1. Introduction

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://tools.ietf.org/html/rfc7231#section-7.1.2
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

Apache CouchDB®, Release 3.3.3

Note: The --data-binary @ option tells curl to read a file’s contents into the HTTP request body. We’re using
the -H option to tell CouchDB that we’re uploading a JPEG file. CouchDB will keep this information around and
will send the appropriate header when requesting this attachment; in case of an image like this, a browser will
render the image instead of offering you the data for download. This will come in handy later. Note that you need
to provide the current revision number of the document you’re attaching the artwork to, just as if you would update
the document. Because, after all, attaching some data is changing the document.

You should now see your artwork image if you point your browser to http://127.0.0.1:5984/albums/
6e1295ed6c¢29495e54cc05947f18c8af/artwork.jpg

If you request the document again, you’ll see a new member:

curl http://admin:password@127.0.0.1:5984/albums/6e1295ed6c29495e54cc05947f18c8af

CouchDB replies:

{
"_id": "6e1295ed6c29495e54cc05947f18c8af",
"_rev": "3-131533518",
"title": "There is Nothing Left to Lose",
"artist": "Foo Fighters",
"year": "1997",
"_attachments": {
"artwork. jpg": {
"stub": true,
"content_type": "image/jpg",
"length": 52450
}
}
}

_attachments is a list of keys and values where the values are JSON objects containing the attachment metadata.
stub=true tells us that this entry is just the metadata. If we use the ?attachments=true HTTP option when
requesting this document, we’d get a Base64 encoded string containing the attachment data.

We’ll have a look at more document request options later as we explore more features of CouchDB, such as repli-
cation, which is the next topic.

1.7.4 Replication

CouchDB replication is a mechanism to synchronize databases. Much like rsync synchronizes two directories
locally or over a network, replication synchronizes two databases locally or remotely.

In a simple POST request, you tell CouchDB the source and the farget of a replication and CouchDB will figure
out which documents and new document revisions are on source that are not yet on target, and will proceed to
move the missing documents and revisions over.

We'll take an in-depth look at replication in the document Introduction to Replication; in this document, we’ll just
show you how to use it.

First, we’ll create a target database. Note that CouchDB won’t automatically create a target database for you, and
will return a replication failure if the target doesn’t exist (likewise for the source, but that mistake isn’t as easy to
make):

curl -X PUT http://admin:password@127.0.0.1:5984/albums-replica

Now we can use the database albums-replica as a replication target:

1.7. The Core API 39

http://127.0.0.1:5984/albums/6e1295ed6c29495e54cc05947f18c8af/artwork.jpg
http://127.0.0.1:5984/albums/6e1295ed6c29495e54cc05947f18c8af/artwork.jpg
http://en.wikipedia.org/wiki/Base64
http://en.wikipedia.org/wiki/Rsync
https://tools.ietf.org/html/rfc7231#section-4.3.3

Apache CouchDB®, Release 3.3.3

curl -vX POST http://admin:password@127.0.0.1:5984/_replicate \

-d '{"source":"http://127.0.0.1:5984/albums","target":"http://127.0.0.1:5984/
—albums-replica"}"' \

-H "Content-Type: application/json"

Note: As of CouchDB 2.0.0, fully qualified URLSs are required for both the replication source and target
parameters.

Note: CouchDB supports the option "create_target":true placed in the JSON POSTed to the _replicate
URL. It implicitly creates the target database if it doesn’t exist.

CouchDB replies (this time we formatted the output so you can read it more easily):

{
"history": [
{
"start_last_seq": O,
"missing_found": 2,
"docs_read": 2,
"end_last_seq": 5,
"missing_checked": 2,
"docs_written": 2,
"doc_write_failures": 0,
"end_time": "Sat, 11 Jul 2009 17:36:21 GMT",
"start_time": "Sat, 11 Jul 2009 17:36:20 GMT"
}
1,
"source_last_seq": 5,
"session_id": "924e75e914392343de89c99d29d06671",
"ok": true

CouchDB maintains a session history of replications. The response for a replication request contains the history
entry for this replication session. It is also worth noting that the request for replication will stay open until repli-
cation closes. If you have a lot of documents, it’ll take a while until they are all replicated and you won’t get
back the replication response until all documents are replicated. It is important to note that replication replicates
the database only as it was at the point in time when replication was started. So, any additions, modifications, or
deletions subsequent to the start of replication will not be replicated.

We'll punt on the details again — the "ok": true at the end tells us all went well. If you now have a look at the
albums-replica database, you should see all the documents that you created in the albums database. Neat, eh?

What you just did is called local replication in CouchDB terms. You created a local copy of a database. This is
useful for backups or to keep snapshots of a specific state of your data around for later. You might want to do this
if you are developing your applications but want to be able to roll back to a stable version of your code and data.

There are more types of replication useful in other situations. The source and target members of our replication
request are actually links (like in HTML) and so far we’ve seen links relative to the server we’re working on (hence
local). You can also specify a remote database as the target:

curl -vX POST http://admin:password@127.0.0.1:5984/_replicate \

-d "{"source":"http://127.0.0.1:5984/albums","target":"http://example.org:5984/
—albums-replica"}' \

-H "Content-Type:application/json"

Using a local source and a remote target database is called push replication. We're pushing changes to a remote
server.

40 Chapter 1. Introduction

Apache CouchDB®, Release 3.3.3

Note: Since we don’t have a second CouchDB server around just yet, we’ll just use the absolute address of our
single server, but you should be able to infer from this that you can put any remote server in there.

This is great for sharing local changes with remote servers or buddies next door.

You can also use a remote source and a local target to do a pull replication. This is great for getting the latest
changes from a server that is used by others:

curl -vX POST http://admin:password@127.0.0.1:5984/_replicate \

-d "{"source":"http://example.org:5984/albums-replica","target":"http://127.0.0.
—1:5984/albums"}" \

-H "Content-Type:application/json"

Finally, you can run remote replication, which is mostly useful for management operations:

curl -vX POST http://admin:password@127.0.0.1:5984/_replicate \

-d "{"source":"http://example.org:5984/albums","target":"http://example.org:5984/
—albums-replica"}' \

-H"Content-Type: application/json"

Note: CouchDB and REST

CouchDB prides itself on having a RESTful API, but these replication requests don’t look very RESTy to the trained
eye. What’s up with that? While CouchDB’s core database, document, and attachment API are RESTful, not all
of CouchDB’s APl is. The replication API is one example. There are more, as we’ll see later in the documents.

Why are there RESTful and non-RESTful APIs mixed up here? Have the developers been too lazy to go REST all
the way? Remember, REST is an architectural style that lends itself to certain architectures (such as the CouchDB
document API). But it is not a one-size-fits-all. Triggering an event like replication does not make a whole lot of
sense in the REST world. It is more like a traditional remote procedure call. And there is nothing wrong with this.

We very much believe in the “use the right tool for the job” philosophy, and REST does not fit every job. For
support, we refer to Leonard Richardson and Sam Ruby who wrote RESTful Web Services (O’Reilly), as they
share our view.

1.7.5 Wrapping Up
This is still not the full CouchDB API, but we discussed the essentials in great detail. We’re going to fill in the
blanks as we go. For now, we believe you’re ready to start building CouchDB applications.
See also:
Complete HITP API Reference:
o Server API Reference
* Database API Reference
* Document API Reference

* Replication API

1.7. The Core API 41

http://en.wikipedia.org/wiki/Representational_state_transfer
http://oreilly.com/catalog/9780596529260

Apache CouchDB®, Release 3.3.3

42 Chapter 1. Introduction

CHAPTER
TWO

REPLICATION

Replication is an incremental one way process involving two databases (a source and a destination).

The aim of replication is that at the end of the process, all active documents in the source database are also in the
destination database and all documents that were deleted in the source database are also deleted in the destination
database (if they even existed).

The replication process only copies the last revision of a document, so all previous revisions that were only in the
source database are not copied to the destination database.

2.1 Introduction to Replication

One of CouchDB’s strengths is the ability to synchronize two copies of the same database. This enables users to
distribute data across several nodes or data centers, but also to move data more closely to clients.

Replication involves a source and a destination database, which can be on the same or on different CouchDB
instances. The aim of replication is that at the end of the process, all active documents in the source database are
also in the destination database and all documents that were deleted in the source database are also deleted in the
destination database (if they even existed).

2.1.1 Transient and Persistent Replication

There are two different ways to set up a replication. The first one that was introduced into CouchDB leads to a
replication that could be called transient. Transient means that there are no documents backing up the replication.
So after a restart of the CouchDB server the replication will disappear. Later, the _replicator database was intro-
duced, which keeps documents containing your replication parameters. Such a replication can be called persistent.
Transient replications were kept for backward compatibility. Both replications can have different replication states.

2.1.2 Triggering, Stopping and Monitoring Replications

A persistent replication is controlled through a document in the _replicator database, where each document de-
scribes one replication process (see Replication Settings). For setting up a transient replication the api endpoint
/_replicate can be used. A replication is triggered by sending a JSON object either to the _replicate endpoint
or storing it as a document into the _replicator database.

If a replication is currently running its status can be inspected through the active tasks API (see /_active_tasks,
Replication Status and /_scheduler/jobs).

For document based-replications, /_scheduler/docs can be used to get a complete state summary. This API is
preferred as it will show the state of the replication document before it becomes a replication job.

For transient replications there is no way to query their state when the job is finished.

A replication can be stopped by deleting the document, or by updating it with its cancel property set to true.

43

Apache CouchDB®, Release 3.3.3

2.1.3 Replication Procedure

During replication, CouchDB will compare the source and the destination database to determine which documents
differ between the source and the destination database. It does so by following the Changes Feeds on the source
and comparing the documents to the destination. Changes are submitted to the destination in batches where they
can introduce conflicts. Documents that already exist on the destination in the same revision are not transferred. As
the deletion of documents is represented by a new revision, a document deleted on the source will also be deleted
on the target.

A replication task will finish once it reaches the end of the changes feed. If its continuous property is set to
true, it will wait for new changes to appear until the task is canceled. Replication tasks also create checkpoint
documents on the destination to ensure that a restarted task can continue from where it stopped, for example after
it has crashed.

When a replication task is initiated on the sending node, it is called push replication, if it is initiated by the receiving
node, it is called pull replication.

2.1.4 Master - Master replication

One replication task will only transfer changes in one direction. To achieve master-master replication, it is possible
to set up two replication tasks in opposite direction. When a change is replicated from database A to B by the
first task, the second task from B to A will discover that the new change on B already exists in A and will wait for
further changes.

2.1.5 Controlling which Documents to Replicate

There are three options for controlling which documents are replicated, and which are skipped:
1. Defining documents as being local.
2. Using Selector Objects.
3. Using Filter Functions.

Local documents are never replicated (see Local (non-replicating) Documents).

Selector Objects can be included in a replication document (see Replication Settings). A selector object contains
a query expression that is used to test whether a document should be replicated.

Filter Functions can be used in a replication (see Replication Settings). The replication task evaluates the filter
function for each document in the changes feed. The document is only replicated if the filter returns true.

Note: Using a selector provides performance benefits when compared with using a Filter Functions. You should
use Selector Objects where possible.

Note: When using replication filters that depend on the document’s content, deleted documents may pose a
problem, since the document passed to the filter will not contain any of the document’s content. This can be
resolved by adding a _deleted: true field to the document instead of using the DELETE HTTP method, paired
with the use of a validate document update handler to ensure the fields required for replication filters are always
present. Take note, though, that the deleted document will still contain all of its data (including attachments)!

44 Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

2.1.6 Migrating Data to Clients

Replication can be especially useful for bringing data closer to clients. PouchDB implements the replication algo-
rithm of CouchDB in JavaScript, making it possible to make data from a CouchDB database available in an offline
browser application, and synchronize changes back to CouchDB.

2.2 Replicator Database

Changed in version 2.1.0: Scheduling replicator was introduced. Replication states, by default are not written
back to documents anymore. There are new replication job states and new API endpoints _scheduler/jobs and
_scheduler/docs.

Changed in version 3.2.0: Fair share scheduling was introduced. Multiple _replicator databases get an equal
chance (configurable) of running their jobs. Previously replication jobs were scheduled without any regard of their
originating database.

Changed in version 3.3.0: winning_revs_only: true replicator option to replicate the winning document
revisions.

The _replicator database works like any other in CouchDB, but documents added to it will trigger replica-
tions. Create (PUT or POST) a document to start replication. DELETE a replication document to cancel an ongoing
replication.

These documents have exactly the same content as the JSON objects we used to POST to _replicate (fields
source, target, create_target, create_target_params, continuous, doc_ids, filter, query_params,
use_checkpoints, checkpoint_interval).

Replication documents can have a user defined _id (handy for finding a specific replication request later). Design
Documents (and _local documents) added to the replicator database are ignored.

The default replicator database is _replicator. Additional replicator databases can be created. To be recognized
as such by the system, their database names should end with /_replicator.

2.2.1 Basics

Let’s say you POST the following document into _replicator:

{
"_id": "my_rep",
"source": "http://myserver.com/foo",
"target": {
"url": "http://localhost:5984/bar",
"auth": {
"basic": {
"username": "user",
"password": "pass"
}
}
1
"create_target": true,
"continuous": true
}

In the couch log you’ll see 2 entries like these:

[notice] 2017-04-05T17:16:19.646716Z nodel@127.0.0.1 <0.29432.0> -------- Replication.,
— "a8la78e822837e66df423d54279c15fe+continuous+create_target" is using:
4 worker processes

(continues on next page)

2.2. Replicator Database 45

http://pouchdb.com/

Apache CouchDB®, Release 3.3.3

(continued from previous page)

a worker batch size of 500

20 HTTP connections

a connection timeout of 30000 milliseconds

10 retries per request

socket options are: [{keepalive,true},{nodelay,false}]
[notice] 2017-04-05T17:16:19.646759Z nodel@127.0.0.1 <0.29432.0> -------- Document..
— my_rep triggered replication a81a78e822837e66df423d54279c15fe+continuous+create_
—target’

Replication state of this document can then be queried from http://adm:pass@localhost:5984/
_scheduler/docs/_replicator/my_rep

{
"database": "_replicator",

"doc_id": "my_rep",

"error_count": 0,

"id": "a81a78e822837e66df423d54279c15fe+continuous+create_target",

"info": {

"revisions_checked": 113,

"missing_revisions_found": 113,

"docs_read": 113,

"docs_written": 113,

"changes_pending": 0,

"doc_write_failures": 0,

"checkpointed_source_seq": "113-
—g1AAAACTe]zLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQI1L9____
—5zKYEQ1ygQLsZsYGgcamiZjKcRgRxwIkGRqA1H-0SbZgk 1IKMLCzTDEOwdWUBAF6HIIQ",

"source_seq": "113-gl1AAAACTe]zLYWBgYMpgTmHgz8tPSTVOMDQy1zMAQsMckEQiQ1L9____
—»szKYEQ1ygQLsZsYGgcamiZ jKcRgRxwIkGRqA1H-0SbZgk 1IKMLCzTDEOwdWUBAF6HIIQ",

"through_seq": "113-glAAAACTe]zLYWBgYMpgTmHgz8tPSTVOMDQy1zMAQsMckEQiQ1L9
—szKYEQ1ygQLsZsYGgcamiZjKcRgRxwIkGRqA1H-0SbZgk 1IKMLCzTDEOwdWUBAF6HIIQ"

1,
"last_updated": "2017-04-05T19:18:15Z",
"node": '"nodel@127.0.0.1",
"source_proxy": null,

"target_proxy": null,

"source": "http://myserver.com/foo/",
"start_time": "2017-04-05T19:18:15Z",
"state": "running",

"target": "http://localhost:5984/bar/"

The state is running. That means replicator has scheduled this replication job to run. Replication document
contents stay the same. Previously, before version 2.1, it was updated with the triggered state.

The replication job will also appear in

http://adm:pass@localhost:5984/_scheduler/jobs

{
"jobs": [
{
"database": "_replicator",
"doc_id": "my_rep",
"history": [

{
"timestamp": "2017-04-05T19:18:15Z",
"type": "started"

(continues on next page)

46 Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"timestamp": "2017-04-05T19:18:15Z",
"type": "added"
}
1,
"id": "a81a78e822837e66df423d54279c15fe+continuous+create_target"”,
"info": {

"changes_pending": 0,

"checkpointed_source_seq": "113-
—g1AAAACTe]zLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQ1L9____
—szKYEQ1ygQLsZsYGgcamiZjKcRgRxwIkGRqA1H-0SbZgk 1IKMLCzTDEOwdWUBAF6HIIQ",

"doc_write_failures": 0,

"docs_read": 113,

"docs_written": 113,

"missing_revisions_found": 113,

"revisions_checked": 113,

"source_seq": "113-
—g1AAAACTe]zLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQ1L9____
—»szKYEQ1ygQLsZsYGgcamiZ jKcRgRxwIkGRgA1H-0SbZgk 1IKMLCzTDEOwdWUBAF6HIIQ",

"through_seq": "113-
—g1AAAACTe]zLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQ1L9____
—szKYEQ1ygQLsZsYGgcamiZjKcRgRxwIkGRqA1H-0SbZgk 1IKMLCzTDEOwdWUBAF6HIIQ"

1,
"node": "nodel@127.0.0.1",
"pid": "<0.1174.0>",
"source": "http://myserver.com/foo/",
"start_time": "2017-04-05T19:18:15Z",
"target": "http://localhost:5984/bar/",
"user": null
}

1,

"offset": O,

"total_rows": 1

_scheduler/jobs shows more information, such as a detailed history of state changes. If a persistent replication
has not yet started, has failed, or is completed, information about its state can only be found in _scheduler/docs.
Keep in mind that some replication documents could be invalid and could not become a replication job. Others
might be delayed because they are fetching data from a slow source database.

If there is an error, for example if the source database is missing, the replication job will crash and retry after a
wait period. Each successive crash will result in a longer waiting period.

For example, POST-ing this document

{
"_id": "my_rep_crashing",
"source": "http://myserver.com/missing",
"target": {
"url": "http://localhost:5984/bar",
"auth": {
"basic": {
"username": "user",
"password": "pass"
}
}

(continues on next page)

2.2. Replicator Database 47

Apache CouchDB®, Release 3.3.3

(continued from previous page)

1,
"create_target": true,
"continuous": true

when source database is missing, will result in periodic starts and crashes with an increasingly larger interval. The
history list from _scheduler/jobs for this replication would look something like this:

[
{
"reason": "db_not_found: could not open http://adm:*****@localhost:5984/
—missing/",
"timestamp": "2017-04-05T20:55:10Z",

"type": "crashed"

1,

{
"timestamp": "2017-04-05T20:55:10Z",
"type": "started"

1,

{
"reason": "db_not_found: could not open http://adm:*****@localhost:5984/

—missing/",

"timestamp": "2017-04-05T20:47:10Z",
"type": "crashed"

1,

{
"timestamp": "2017-04-05T20:47:10Z",
"type": "started"

}

_scheduler/docs shows a shorter summary:

{
"database": "_replicator",
"doc_id": "my_rep_crashing",
"error_count": 6,
"id": "cb78391640ed34e9578e638d9bb00e44+create_target",
"info": {
"error": "db_not_found: could not open http://myserver.com/missing/"
1,
"last_updated": "2017-04-05T20:55:10Z",
"node": "nodel@127.0.0.1",
"source_proxy": null,
"target_proxy": null,
"source": "http://myserver.com/missing/",
"start_time": "2017-04-05T20:38:34Z",
"state": "crashing",
"target": "http://localhost:5984/bar/"
}

Repeated crashes are described as a crashing state. -ing suffix implies this is a temporary state. User at any
moment could create the missing database and then replication job could return back to the normal.

48 Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

2.2.2 Documents describing the same replication

Lets suppose 2 documents are added to the _replicator database in the following order:

{
"_id": "my_rep",
"source": "http://myserver.com/foo",
"target": "http://user:pass@localhost:5984/bar",
"create_target": true,
"continuous": true

and

"_id": "my_rep_dup",

"source": "http://myserver.com/foo",

"target": "http://user:pass@localhost:5984/bar",
"create_target": true,

"continuous": true

Both describe exactly the same replication (only their _ids differ). In this case document my_rep triggers the
replication, while my_rep_dup" will fail. Inspecting _scheduler/docs explains exactly why it failed:

{
"database": "_replicator",
"doc_id": "my_rep_dup",
"error_count": 1,
"id": null,
"info": {

"error": "Replication "a81a78e822837e66df423d54279cl15fe+continuous+create_
—target” specified by document ‘my_rep_dup already started, triggered by document..
< my_rep from db "_replicator "

1,

"last_updated": "2017-04-05T21:41:51Z",
"source": "http://myserver.com/foo/",
"start_time": "2017-04-05T21:41:51Z",

"state": "failed",

"target": "http://user:****@localhost:5984/bar",

Notice the state for this replication is failed. Unlike crashing, failed state is terminal. As long as both docu-
ments are present the replicator will not retry to run my_rep_dup replication. Another reason could be malformed
documents. For example if worker process count is specified as a string ("worker_processes": "a few")
instead of an integer, failure will occur.

2.2.3 Replication Scheduler

Once replication jobs are created they are managed by the scheduler. The scheduler is the replication component
which periodically stops some jobs and starts others. This behavior makes it possible to have a larger number of
jobs than the cluster could run simultaneously. Replication jobs which keep failing will be penalized and forced to
wait. The wait time increases exponentially with each consecutive failure.

When deciding which jobs to stop and which to start, the scheduler uses a round-robin algorithm to ensure fairness.
Jobs which have been running the longest time will be stopped, and jobs which have been waiting the longest time
will be started.

2.2. Replicator Database 49

Apache CouchDB®, Release 3.3.3

Note: Non-continuous (normal) replication are treated differently once they start running. See Normal vs Contin-
uous Replications section for more information.

The behavior of the scheduler can configured via max_jobs, interval and max_churn options. See Replicator
configuration section for additional information.

2.2.4 Replication states

Replication jobs during their life-cycle pass through various states. This is a diagram of all the states and transitions
between them:

Fig. 1: Replication state diagram

Blue and yellow shapes represent replication job states.

Trapezoidal shapes represent external APIs, that’s how users interact with the replicator. Writing documents to
_replicator is the preferred way of creating replications, but posting to the _replicate HTTP endpoint is also
supported.

Six-sided shapes are internal API boundaries. They are optional for this diagram and are only shown as additional
information to help clarify how the replicator works. There are two processing stages: the first is where replication
documents are parsed and become replication jobs, and the second is the scheduler itself. The scheduler runs
replication jobs, periodically stopping and starting some. Jobs posted via the _replicate endpoint bypass the
first component and go straight to the scheduler.

States descriptions

Before explaining the details of each state, it is worth noticing that color and shape of each state in the diagram:

Blue vs yellow partitions states into “healthy” and “unhealthy”, respectively. Unhealthy states indicate something
has gone wrong and it might need user’s attention.

Rectangle vs oval separates “terminal” states from “non-terminal” ones. Terminal states are those which will not
transition to other states any more. Informally, jobs in a terminal state will not be retried and don’t consume memory
or CPU resources.

e Initializing: Indicates replicator has noticed the change from the replication document. Jobs should
transition quickly through this state. Being stuck here for a while could mean there is an internal error.

e Failed: Replication document could not be processed and turned into a valid replication job for the sched-
uler. This state is terminal and requires user intervention to fix the problem. A typical reason for ending up
in this state is a malformed document. For example, specifying an integer for a parameter which accepts a
boolean. Another reason for failure could be specifying a duplicate replication. A duplicate replication is a
replication with identical parameters but a different document ID.

e Error: Replication document update could not be turned into a replication job. Unlike the Failed state,
this one is temporary, and replicator will keep retrying periodically. There is an exponential backoff applied
in case of consecutive failures. The main reason this state exists is to handle filtered replications with cus-
tom user functions. Filter function content is needed in order to calculate the replication ID. A replication
job could not be created until the function code is retrieved. Because retrieval happens over the network,
temporary failures have to be handled.

Running: Replication job is running normally. This means, there might be a change feed open, and if
changes are noticed, they would be processed and posted to the target. Job is still considered Running even
if its workers are currently not streaming changes from source to target and are just waiting on the change
feed. Continuous replications will most likely end up in this state.

50 Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

* Pending: Replication job is not running and is waiting its turn. This state is reached when the number
of replication jobs added to the scheduler exceeds replicator.max_jobs. In that case scheduler will
periodically stop and start subsets of jobs trying to give each one a fair chance at making progress.

e Crashing: Replication job has been successfully added to the replication scheduler. However an error was
encountered during the last run. Error could be a network failure, a missing source database, a permissions
error, etc. Repeated consecutive crashes result in an exponential backoff. This state is considered temporary
(non-terminal) and replication jobs will be periodically retried.

* Completed: This is a terminal, successful state for non-continuous replications. Once in this state the
replication is “forgotten” by the scheduler and it doesn’t consume any more CPU or memory resources.
Continuous replication jobs will never reach this state.

Note: Maximum backoff interval for states Error and Crashing is calculated based on the replicator.
max_history option. See Replicator configuration section for additional information.

Normal vs Continuous Replications

Normal (non-continuous) replications once started will be allowed to run to completion. That behavior is to pre-
serve their semantics of replicating a snapshot of the source database to the target. For example if new documents
are added to the source after the replication are started, those updates should not show up on the target database.
Stopping and restring a normal replication would violate that constraint.

Warning: When there is a mix of continuous and normal replications, once normal replication are scheduled
to run, they might temporarily starve continuous replication jobs.

However, normal replications will still be stopped and rescheduled if an operator reduces the value for the maximum
number of replications. This is so that if an operator decides replications are overwhelming a node that it has the
ability to recover. Any stopped replications will be resubmitted to the queue to be rescheduled.

2.2.5 Compatibility Mode

Previous version of CouchDB replicator wrote state updates back to replication documents. In cases where user
code programmatically read those states, there is compatibility mode enabled via a configuration setting:

[replicator]
update_docs = true

In this mode replicator will continue to write state updates to the documents.

To effectively disable the scheduling behavior, which periodically stop and starts jobs, set max_jobs configuration
setting to a large number. For example:

[replicator]
max_jobs = 9999999

See Replicator configuration section for other replicator configuration options.

2.2. Replicator Database 51

Apache CouchDB®, Release 3.3.3

2.2.6 Canceling replications

To cancel a replication simply DELETE the document which triggered the replication. To update a replication, for
example, change the number of worker or the source, simply update the document with new data. If there is extra
application-specific data in the replication documents, that data is ignored by the replicator.

2.2.7 Server restart

When CouchDB is restarted, it checks its _replicator databases and restarts replications described by documents
if they are not already in in a completed or failed state. If they are, they are ignored.

2.2.8 Clustering

In a cluster, replication jobs are balanced evenly among all the nodes nodes such that a replication job runs on only
one node at a time.

Every time there is a cluster membership change, that is when nodes are added or removed, as it happens in a
rolling reboot, replicator application will notice the change, rescan all the document and running replication, and
re-evaluate their cluster placement in light of the new set of live nodes. This mechanism also provides replication
fail-over in case a node fails. Replication jobs started from replication documents (but not those started from
_replicate HTTP endpoint) will automatically migrate one of the live nodes.

2.2.9 Additional Replicator Databases

Imagine replicator database (_replicator) has these two documents which represent pull replications from
servers A and B:

{
"_id": "rep_from_A",
"source": "http://aserver.com:5984/foo",
"target": {
"url": "http://localhost:5984/foo_a",
"auth": {
"basic": {
"username": "user",
"password": "pass"
}
}
1
"continuous": true
}
{
"_id": "rep_from_B",
"source": "http://bserver.com:5984/foo",
"target": {
"url": "http://localhost:5984/foo_b",
"auth": {
"basic": {
"username": "user",
"password": "pass"
}
}
1,
"continuous": true
}

52 Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

Now without stopping and restarting CouchDB, add another replicator database. For example another/
_replicator:

$ curl -X PUT http://user:pass@localhost:5984/another%2F_replicator/
{"ok":true}

Note: A /character in a database name, when used in a URL, should be escaped.

Then add a replication document to the new replicator database:

{
"_id": "rep_from_X",
"source": "http://xserver.com:5984/foo",
"target": "http://user:pass@localhost:5984/foo_x",
"continuous": true
}

From now on, there are three replications active in the system: two replications from A and B, and a new one from
X.

Then remove the additional replicator database:

$ curl -X DELETE http://user:pass@localhost:5984/another%2F_replicator/
{"ok":true}

After this operation, replication pulling from server X will be stopped and the replications in the _replicator
database (pulling from servers A and B) will continue.

2.2.10 Fair Share Job Scheduling

When multiple _replicator databases are used, and the total number of jobs on any node is greater than
max_jobs, replication jobs will be scheduled such that each of the _replicator databases by default get an
equal chance of running their jobs.

This is accomplished by assigning a number of “shares” to each _replicator database and then automati-
cally adjusting the proportion of running jobs to match each database’s proportion of shares. By default, each
_replicator database is assigned 100 shares. It is possible to alter the share assignments for each individual
_replicator database in the [replicator.shares] configuration section.

The fair share behavior is perhaps easier described with a set of examples. Each example assumes the default of
max_jobs = 500, and two replicator databases: _replicator and another/_replicator.

Example 1: If _replicator has 1000 jobs and another/_replicator has 10, the scheduler will run about 490
jobs from _replicator and 10 jobs from another/_replicator.

Example 2: If _replicator has 200 jobs and another/_replicator also has 200 jobs, all 400 jobs will get to
run as the sum of all the jobs is less than the max_jobs limit.

Example 3: If both replicator databases have 1000 jobs each, the scheduler will run about 250 jobs from each
database on average.

Example 4: If both replicator databases have 1000 jobs each, but _replicator was assigned 400 shares, then on
average the scheduler would run about 400 jobs from _replicator and 100 jobs from _another/replicator.

The proportions described in the examples are approximate and might oscillate a bit, and also might take anywhere
from tens of minutes to an hour to converge.

2.2. Replicator Database 53

Apache CouchDB®, Release 3.3.3

2.2.11 Replicating the replicator database

Imagine you have in server C a replicator database with the two following pull replication documents in it:

{

"_id": "rep_from_A",

"source": "http://aserver.com:5984/foo0",
"target": "http://user:pass@localhost:5984/foo_a",
"continuous": true
}
{
"_id": "rep_from_B",
"source": "http://bserver.com:5984/foo",
"target": "http://user:pass@localhost:5984/foo_b",
"continuous": true
}

Now you would like to have the same pull replications going on in server D, that is, you would like to have server
D pull replicating from servers A and B. You have two options:

» Explicitly add two documents to server’s D replicator database
* Replicate server’s C replicator database into server’s D replicator database

Both alternatives accomplish exactly the same goal.

2.2.12 Delegations

Replication documents can have a custom user_ctx property. This property defines the user context under which
a replication runs. For the old way of triggering a replication (POSTing to /_replicate/), this property is not
needed. That’s because information about the authenticated user is readily available during the replication, which
is not persistent in that case. Now, with the replicator database, the problem is that information about which user
is starting a particular replication is only present when the replication document is written. The information in the
replication document and the replication itself are persistent, however. This implementation detail implies that in
the case of a non-admin user, a user_ctx property containing the user’s name and a subset of their roles must be
defined in the replication document. This is enforced by the document update validation function present in the
default design document of the replicator database. The validation function also ensures that non-admin users are
unable to set the value of the user context’s name property to anything other than their own user name. The same
principle applies for roles.

For admins, the user_ctx property is optional, and if it’s missing it defaults to a user context with name null and
an empty list of roles, which means design documents won’t be written to local targets. If writing design documents
to local targets is desired, the role _admin must be present in the user context’s list of roles.

Also, for admins the user_ctx property can be used to trigger a replication on behalf of another user. This is the
user context that will be passed to local target database document validation functions.

Note: The user_ctx property only has effect for local endpoints.

Example delegated replication document:

{
"_id": "my_rep",
"source": "http://bserver.com:5984/foo",
"target": "http://user:pass@localhost:5984/bar",
"continuous": true,

"user_ctx": {

(continues on next page)

54 Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"name": "joe",
"roles": ["erlanger", "researcher"]

As stated before, the user_ctx property is optional for admins, while being mandatory for regular (non-admin)
users. When the roles property of user_ctx is missing, it defaults to the empty list [].

2.2.13 Selector Objects
Including a Selector Object in the replication document enables you to use a query expression to determine if a
document should be included in the replication.

The selector specifies fields in the document, and provides an expression to evaluate with the field content or other
data. If the expression resolves to true, the document is replicated.

The selector object must:
* Be structured as valid JSON.
 Contain a valid query expression.
The syntax for a selector is the same as the selectorsyntax used for _find.

Using a selector is significantly more efficient than using a JavaScript filter function, and is the recommended
option if filtering on document attributes only.

2.2.14 Specifying Usernames and Passwords

There are multiple ways to specify usernames and passwords for replication endpoints:
e Inan {"auth": {"basic": ...}} object:

New in version 3.2.0.

{
"target": {
"url": "http://someurl.com/mydb",
"auth": {
"basic": {
"username": "$username",
"password": "$password"
}
}
1
}

This is the prefererred format as it allows including characters like @, : and others in the username and
password fields.

¢ In the userinfo part of the endpoint URL. This allows for a more compact endpoint represention however, it
prevents using characters like @ and : in usernames or passwords:

{
"target": "http://user:pass@localhost:5984/bar"

2.2. Replicator Database 55

Apache CouchDB®, Release 3.3.3

Specifying credentials in the userinfo part of the URL is deprecated as per RFC3986. CouchDB still supports
this way of specifying credentials and doesn’t yet have a target release when support will be removed.

e In an "Authorization: Basic $b64encoded_username_and_password" header:

{
"target": {
"url": "http://someurl.com/mydb",
"headers": {
"Authorization": "Basic dXNlcjpwYXNz"
}
1,
}

This method has the downside of the going through the extra step of base64 encoding. In addi-
tion, it could give the impression that it encrypts or hides the credentials so it could encourage
invadvertent sharing and leaking credentials.

When credentials are provided in multiple forms, they are selected in the following order:
e "auth": {"basic": {...}} object
* URL userinfo
e "Authorization: Basic ..." header.

First, the auth object is checked, and if credentials are defined there, they are used. If they are not, then URL
userinfo is checked. If credentials are found there, then those credentials are used, otherwise basic auth header is
used.

2.2.15 Replicate Winning Revisions Only

Use the winning_revs_only: true option to replicate “winning” document revisions only. These are the
revisions that would be returned by the GET db/doc API endpoint by default, or appear in the _changes feed
with the default parameters.

POST http://couchdb:5984/_replicate HTTP/1.1
Accept: application/json
Content-Type: application/json

{
"winning_revs_only" : true
"source" : "http://source:5984/recipes",
"target" : "http://target:5984/recipes",
}

Replication with this mode discards conflicting revisions, so it could be one way to remove conflicts through
replication.

Replication IDs and checkpoint IDs, generated by winning_revs_only: true replications will be different
than those generated by default, so it is possible to first replicate the winning revisions, then later, to “backfill” the
rest of the revisions with a regular replication job.

winning_revs_only: true option can be combined with filters or other options like continuous: true or
create_target: true.

56 Chapter 2. Replication

https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.1

Apache CouchDB®, Release 3.3.3

2.3 Replication and conflict model

Let’s take the following example to illustrate replication and conflict handling.
¢ Alice has a document containing Bob’s business card;
 She synchronizes it between her desktop PC and her laptop;

* On the desktop PC, she updates Bob’s E-mail address; Without syncing again, she updates Bob’s mobile
number on the laptop;

* Then she replicates the two to each other again.

So on the desktop the document has Bob’s new E-mail address and his old mobile number, and on the laptop it has
his old E-mail address and his new mobile number.

The question is, what happens to these conflicting updated documents?

2.3.1 CouchDB replication

CouchDB works with JSON documents inside databases. Replication of databases takes place over HTTP, and can
be either a “pull” or a “push”, but is unidirectional. So the easiest way to perform a full sync is to do a “push”
followed by a “pull” (or vice versa).

So, Alice creates vl and sync it. She updates to v2a on one side and v2b on the other, and then replicates. What
happens?

The answer is simple: both versions exist on both sides!

DESKTOP LAPTOP
o +
| /db/bob | INITIAL
[vl I CREATION
o +
o + fmm +
| /db/bob | --------————————- > | /db/bob | PUSH
| w1 | | vl |
o + e +
o + - + INDEPENDENT
| /db/bob | | /db/bob | LOCAL
| v2a | | v2b | EDITS
o + e +
o + Fmm +
| /db/bob | -------—————————- > | /db/bob | PUSH
| v2a | | v2a
Fommm - + | v2b |

e +

o + fmm +
| /db/bob | <--------——————--- | /db/bob | PULL
| v2a | | v2a
| v2b | | v2b |
o + o +

After all, this is not a file system, so there’s no restriction that only one document can exist with the name /db/bob.
These are just “conflicting” revisions under the same name.

2.3. Replication and conflict model 57

Apache CouchDB®, Release 3.3.3

Because the changes are always replicated, the data is safe. Both machines have identical copies of both documents,
so failure of a hard drive on either side won’t lose any of the changes.

Another thing to notice is that peers do not have to be configured or tracked. You can do regular replications to
peers, or you can do one-off, ad-hoc pushes or pulls. After the replication has taken place, there is no record kept
of which peer any particular document or revision came from.

So the question now is: what happens when you try to read /db/bob? By default, CouchDB picks one arbitrary
revision as the “winner”, using a deterministic algorithm so that the same choice will be made on all peers. The
same happens with views: the deterministically-chosen winner is the only revision fed into your map function.

Let’s say that the winner is v2a. On the desktop, if Alice reads the document she’ll see v2a, which is what she
saved there. But on the laptop, after replication, she’ll also see only v2a. It could look as if the changes she made
there have been lost - but of course they have not, they have just been hidden away as a conflicting revision. But
eventually she’ll need these changes merged into Bob’s business card, otherwise they will effectively have been
lost.

Any sensible business-card application will, at minimum, have to present the conflicting versions to Alice and
allow her to create a new version incorporating information from them all. Ideally it would merge the updates
itself.

2.3.2 Conflict avoidance

When working on a single node, CouchDB will avoid creating conflicting revisions by returning a 409 Conflict
error. This is because, when you PUT a new version of a document, you must give the _rev of the previous version.
If that _rev has already been superseded, the update is rejected with a 409 Conflict response.

So imagine two users on the same node are fetching Bob’s business card, updating it concurrently, and writing it
back:

USER1 -——-———————- > GET /db/bob
<———mmm - {"_rev":"l-aaa", ...}
USER2 -——---—————- > GET /db/bob
<——mmmm - {"_rev":"l-aaa", ...}
USER1 - ———————-——- > PUT /db/bob?rev=1-aaa
<mmmmmm - {"_rev":"2-bbb", ...}
USER2 ——————-———- > PUT /db/bob?rev=1-aaa
<mmmmmm— - 409 Conflict (not saved)

User2’s changes are rejected, so it’s up to the app to fetch /db/bob again, and either:
1. apply the same changes as were applied to the earlier revision, and submit a new PUT
2. redisplay the document so the user has to edit it again

3. just overwrite it with the document being saved before (which is not advisable, as userl’s changes will be
silently lost)

So when working in this mode, your application still has to be able to handle these conflicts and have a suitable
retry strategy, but these conflicts never end up inside the database itself.

58 Chapter 2. Replication

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10

Apache CouchDB®, Release 3.3.3

2.3.3 Revision tree

When you update a document in CouchDB, it keeps a list of the previous revisions. In the case where conflicting
updates are introduced, this history branches into a tree, where the current conflicting revisions for this document
form the tips (leaf nodes) of this tree:

,--> ra
rl --> r2b
T--> r2c

Each branch can then extend its history - for example if you read revision r2b and then PUT with ?rev=r2b then
you will make a new revision along that particular branch.

,--> r2a -> r3a -> r4a
rl --> r2b -> r3b
"--> r2c -> r3c

Here, (r4a, r3b, r3c) are the set of conflicting revisions. The way you resolve a conflict is to delete the leaf nodes
along the other branches. So when you combine (r4a+r3b+r3c) into a single merged document, you would replace
r4a and delete r3b and r3c.

,--> r2a -> r3a -> rd4a -> rb5a
rl --> r2b -> r3b -> (r4b deleted)
"--> r2c -> r3c -> (r4c deleted)

Note that r4b and r4c still exist as leaf nodes in the history tree, but as deleted docs. You can retrieve them but they
will be marked "_deleted": true.

When you compact a database, the bodies of all the non-leaf documents are discarded. However, the list of historical
_revs is retained, for the benefit of later conflict resolution in case you meet any old replicas of the database at some
time in future. There is “revision pruning” to stop this getting arbitrarily large.

2.3.4 Working with conflicting documents

The basic GET /{db}/{docid} operation will not show you any information about conflicts. You see only the
deterministically-chosen winner, and get no indication as to whether other conflicting revisions exist or not:

{

ll_idll : IlteStll’
"_rev":"2-b91bb807b4685080c6a651115ff558£5",
"hello":"bar"

If you do GET /db/test?conflicts=true, and the document is in a conflict state, then you will get the winner
plus a _conflicts member containing an array of the revs of the other, conflicting revision(s). You can then fetch
them individually using subsequent GET /db/test?rev=xxxx operations:

{
"_id":"test",
"_rev":"2-b91bb807b4685080c6a651115£ff558£5",
"hello":"bar",

"_conflicts":[
"2-65db2al11b5172b£f928e3bcf59£728970",
"2-5bc3c6319edf62d4c624277£dd0ael191"

2.3. Replication and conflict model 59

Apache CouchDB®, Release 3.3.3

If you do GET /db/test?open_revs=all then you will get all the leaf nodes of the revision tree. This will give
you all the current conflicts, but will also give you leaf nodes which have been deleted (i.e. parts of the conflict
history which have since been resolved). You can remove these by filtering out documents with "_deleted" : true:

[
{"ok":{"_id":"test","_rev":"2-5bc3c6319edf62d4c624277£fdd0ael91","hello":"foo"}},
{"ok":{"_id":"test","_rev":"2-65db2al1b5172b£928e3bcf59£728970", "hello": "baz"}},
{"ok":{"_id":"test","_rev":"2-b91bb807b4685080c6a651115f£f558£f5","hello":"bar"}}

The "ok" tag is an artifact of open_revs, which also lets you list explicit revisions as a JSON array, e.g.
open_revs=[revl,rev2,rev3]. In this form, it would be possible to request a revision which is now missing,
because the database has been compacted.

Note: The order of revisions returned by open_revs=all is NOT related to the deterministic “winning” algo-
rithm. In the above example, the winning revision is 2-b91b... and happens to be returned last, but in other cases
it can be returned in a different position.

Once you have retrieved all the conflicting revisions, your application can then choose to display them all to the
user. Or it could attempt to merge them, write back the merged version, and delete the conflicting versions - that
is, to resolve the conflict permanently.

As described above, you need to update one revision and delete all the conflicting revisions explicitly. This can be
done using a single POST to _bulk_docs, setting "_deleted": true on those revisions you wish to delete.

2.3.5 Multiple document API

Finding conflicted documents with Mango

New in version 2.2.0.

CouchDB’s Mango system allows easy querying of documents with conflicts, returning the full body of each doc-
ument as well.

Here’s how to use it to find all conflicts in a database:

$ curl -X POST http://127.0.0.1/dbname/_find \
-d '{"selector": {"_conflicts": { "$exists": true}}, "conflicts": true}' \
-Hcontent-type:application/json

{"docs": [
{"_id":"doc","_rev'":"1-3975759ccff3842adf690a5c10caeed42","a":2," _conflicts":["1-
—23202479633¢c2b380£79507a776743d5"]}

] ki

"bookmark" :

—"g1AAAABheJZLYWBgYMpgSmHgKy5JLCr]Tq2MT81PzkzIBYozA1kgKQ6YVA5QKkBFMgK SVDHWN j IOM jEZMLc2M
-}

The bookmark value can be used to navigate through additional pages of results if necessary. Mango by default
only returns 25 results per request.

If you expect to run this query often, be sure to create a Mango secondary index to speed the query:

$ curl -X POST http://127.0.0.1/dbname/_index \
-d "{"index":{"fields": ["_conflicts"]}}' \
-Hcontent-type:application/json

Of course, the selector can be enhanced to filter documents on additional keys in the document. Be sure to add
those keys to your secondary index as well, or a full database scan will be triggered.

60 Chapter 2. Replication

jZONkowtDNLML

Apache CouchDB®, Release 3.3.3

Finding conflicted documents using the _all_docs index

You can fetch multiple documents at once using include_docs=true on a view. However, a conflicts=true
request is ignored; the “doc” part of the value never includes a _conflicts member. Hence you would need to
do another query to determine for each document whether it is in a conflicting state:

$ curl 'http://127.0.0.1:5984/conflict_test/_all_docs?include_docs=true&conflicts=true

—

{
"total_rows":1,
"offset":0,
"rows": [
{
"id":"test",
"key":"test",
"value":{"rev":"2-b91bb807b4685080c6a651115ff558£5"},
"doc": {
"_id":"test",
"_rev":"2-b91bb807b4685080c6a651115£f558£5",
"hello":"bar"
}
}
]
}

$ curl 'http://127.0.0.1:5984/conflict_test/test?conflicts=true’

"_id":"test",

"_rev":"2-b91bb807b4685080c6a651115££f558£f5",

"hello":"bar",

"_conflicts":[
"2-65db2al11b5172b£f928e3bcf59£728970",
"2-5bc3c6319edf62d4c624277£dd0ael91"

2.3.6 View map functions

Views only get the winning revision of a document. However they do also get a _conflicts member if there
are any conflicting revisions. This means you can write a view whose job is specifically to locate documents with
conflicts. Here is a simple map function which achieves this:

function(doc) {
if (doc._conflicts) {
emit(null, [doc._rev].concat(doc._conflicts));

}

which gives the following output:

{

"total_rows":1,
"offset":0,
"rows": [

(continues on next page)

2.3. Replication and conflict model 61

Apache CouchDB®, Release 3.3.3

(continued from previous page)

{

"id":"test",

"key":null,

"value": [
"2-b91bb807b4685080c6a651115££558£5",
"2-65db2al11b5172b£928e3bcf59£728970",
"2-5bc3c6319edf62d4c624277£dd0ael91"

]

}

If you do this, you can have a separate “sweep’’ process which periodically scans your database, looks for documents
which have conflicts, fetches the conflicting revisions, and resolves them.

Whilst this keeps the main application simple, the problem with this approach is that there will be a window between
a conflict being introduced and it being resolved. From a user’s viewpoint, this may appear that the document they
just saved successfully may suddenly lose their changes, only to be resurrected some time later. This may or may
not be acceptable.

Also, it’s easy to forget to start the sweeper, or not to implement it properly, and this will introduce odd behaviour
which will be hard to track down.

CouchDB’s “winning” revision algorithm may mean that information drops out of a view until a conflict has been
resolved. Consider Bob’s business card again; suppose Alice has a view which emits mobile numbers, so that her
telephony application can display the caller’s name based on caller ID. If there are conflicting documents with Bob’s
old and new mobile numbers, and they happen to be resolved in favour of Bob’s old number, then the view won’t
be able to recognise his new one. In this particular case, the application might have preferred to put information
from both the conflicting documents into the view, but this currently isn’t possible.

Suggested algorithm to fetch a document with conflict resolution:
1. Get document via GET docid?conflicts=true request

2. For each member in the _conflicts array call GET docid?rev=xxx. If any errors occur at this stage,
restart from step 1. (There could be a race where someone else has already resolved this conflict and deleted
that rev)

3. Perform application-specific merging
4. Write _bulk_docs with an update to the first rev and deletes of the other revs.

This could either be done on every read (in which case you could replace all calls to GET in your application with
calls to a library which does the above), or as part of your sweeper code.

And here is an example of this in Ruby using the low-level RestClient:

require 'rubygems'

require 'rest_client'

require 'json'
="http://127.0.0.1:5984/conflict_test"

Write multiple documents
def writem(docs)
.parse(.post (" /_bulk_docs", {
"docs" => docs,
}.to_json))
end

Write one document, return the rev
def writel(doc, id=nil, rev=nil)

(continues on next page)

62 Chapter 2. Replication

https://rubygems.org/gems/rest-client

Apache CouchDB®, Release 3.3.3

(continued from previous page)

doc['_id'] = id if id

doc['_rev'] = rev if rev

writem([doc]).first['rev']
end

Read a document, return *all* revs
def readl(id)
retries = 0
loop do
FIXME: escape id
res = [JSON.parse(RestClient.get("#{DB}/#{id}?conflicts=true™))]
if revs = res.first.delete('_conflicts")
begin
revs.each do |rev|
res << JSON.parse(RestClient.get("#{DB}/#{id}?rev=#{rev}"))
end
rescue
retries += 1
raise if retries >= 5

next
end
end
return res
end
end
Create DB

RestClient.delete DB rescue nil
RestClient.put DB, {}.to_json

Write a document
revl = writel({"hello"=>"xxx"},"test")
p readl("test")

Make three conflicting versions

writel({"hello"=>"foo0"},"test",revl)
writel({"hello"=>"bar"},"test",revl)
writel({"hello"=>"baz"},"test",revl)

res = readl("test")
p res

Now let's replace these three with one

res.first['hello'] = "foo+bar+baz"
res.each_with_index do |r,i|
unless i ==
r.replace({'_id'=>r['_id'], '_rev'=>r['_rev'], '_deleted'=>true})
end
end
writem(res)

p readl("test")

An application written this way never has to deal with a PUT 409, and is automatically multi-master capable.

You can see that it’s straightforward enough when you know what you’re doing. It’s just that CouchDB doesn’t
currently provide a convenient HTTP API for “fetch all conflicting revisions”, nor “PUT to supersede these N

2.3. Replication and conflict model 63

Apache CouchDB®, Release 3.3.3

revisions”, so you need to wrap these yourself. At the time of writing, there are no known client-side libraries
which provide support for this.

2.3.7 Merging and revision history

Actually performing the merge is an application-specific function. It depends on the structure of your data. Some-
times it will be easy: e.g. if a document contains a list which is only ever appended to, then you can perform a
union of the two list versions.

Some merge strategies look at the changes made to an object, compared to its previous version. This is how Git’s
merge function works.

For example, to merge Bob’s business card versions v2a and v2b, you could look at the differences between v1 and
v2b, and then apply these changes to v2a as well.

With CouchDB, you can sometimes get hold of old revisions of a document. For example, if you fetch /db/bob?
rev=v2b&revs_info=true you’ll get a list of the previous revision ids which ended up with revision v2b. Doing
the same for v2a you can find their common ancestor revision. However if the database has been compacted, the
content of that document revision will have been lost. revs_info will still show that v1 was an ancestor, but report
it as “missing”:

BEFORE COMPACTION AFTER COMPACTION
,—> v2a v2a
vl
T-> v2b v2b

So if you want to work with diffs, the recommended way is to store those diffs within the new revision itself. That
is: when you replace v1 with v2a, include an extra field or attachment in v2a which says which fields were changed
from v1 to v2a. This unfortunately does mean additional book-keeping for your application.

2.3.8 Comparison with other replicating data stores

The same issues arise with other replicating systems, so it can be instructive to look at these and see how they
compare with CouchDB. Please feel free to add other examples.

Unison

Unison is a bi-directional file synchronisation tool. In this case, the business card would be a file, say bob.vcf.

When you run unison, changes propagate both ways. If a file has changed on one side but not the other, the new
replaces the old. Unison maintains a local state file so that it knows whether a file has changed since the last
successful replication.

In our example it has changed on both sides. Only one file called bob.vcf can exist within the file system. Unison
solves the problem by simply ducking out: the user can choose to replace the remote version with the local version,
or vice versa (both of which would lose data), but the default action is to leave both sides unchanged.

From Alice’s point of view, at least this is a simple solution. Whenever she’s on the desktop she’ll see the version
she last edited on the desktop, and whenever she’s on the laptop she’ll see the version she last edited there.

But because no replication has actually taken place, the data is not protected. If her laptop hard drive dies, she’ll
lose all her changes made on the laptop; ditto if her desktop hard drive dies.

It’s up to her to copy across one of the versions manually (under a different filename), merge the two, and then
finally push the merged version to the other side.

Note also that the original file (version v1) has been lost at this point. So it’s not going to be known from inspection
alone whether v2a or v2b has the most up-to-date E-mail address for Bob, or which version has the most up-to-date
mobile number. Alice has to remember which one she entered last.

64 Chapter 2. Replication

http://www.cis.upenn.edu/~bcpierce/unison/

Apache CouchDB®, Release 3.3.3

Git

Git is a well-known distributed source control system. Like Unison, Git deals with files. However, Git considers
the state of a whole set of files as a single object, the “tree”. Whenever you save an update, you create a “commit”
which points to both the updated tree and the previous commit(s), which in turn point to the previous tree(s). You
therefore have a full history of all the states of the files. This history forms a branch, and a pointer is kept to the tip
of the branch, from which you can work backwards to any previous state. The “pointer” is an SHA1 hash of the
tip commit.

If you are replicating with one or more peers, a separate branch is made for each of those peers. For example, you
might have:

main -- my local branch
remotes/foo/main -- branch on peer 'foo'
remotes/bar/main -- branch on peer 'bar'

In the regular workflow, replication is a “pull”, importing changes from a remote peer into the local repository. A
“pull” does two things: first “fetch” the state of the peer into the remote tracking branch for that peer; and then
attempt to “merge” those changes into the local branch.

Now let’s consider the business card. Alice has created a Git repo containing bob . vcf, and cloned it across to the
other machine. The branches look like this, where AAAAAAAA is the SHA1 of the commit:

—————————— desktop ---------- -—-------- laptop -~——-—-—-—----
main: AAAAAAAA main: AAAAAAAA
remotes/laptop/main: AAAAAAAA remotes/desktop/main: AAAAAAAA

Now she makes a change on the desktop, and commits it into the desktop repo; then she makes a different change
on the laptop, and commits it into the laptop repo:

—————————— desktop ---------- -—-------- laptop --——-------
main: BBBBBBBB main: CCCCCCCC
remotes/laptop/main: AAAAAAAA remotes/desktop/main: AAAAAAAA

Now on the desktop she does git pull laptop. First, the remote objects are copied across into the local repo
and the remote tracking branch is updated:

—————————— desktop ---------- -—-------- laptop -~———-—-—----
main: BBBBBBBB main: CCCCCCCC
remotes/laptop/main: CCCCCCCC remotes/desktop/main: AAAAAAAA

Note: The repo still contains AAAAAAAA because commits BBBBBBBB and CCCCCCCC point to it.

Then Git will attempt to merge the changes in. Knowing that the parent commit to CCCCCCCC is AAAAAAAA, it takes
a diff between AAAAAAAA and CCCCCCCC and tries to apply it to BBBBBBBB.

If this is successful, then you’ll get a new version with a merge commit:

—————————— desktop ---------- -—-------- laptop --—--------
main: DDDDDDDD main: CCCCCCCC
remotes/laptop/main: CCCCCCCC remotes/desktop/main: AAAAAAAA

Then Alice has to logon to the laptop and run git pull desktop. A similar process occurs. The remote tracking
branch is updated:

—————————— desktop ---------- ---------- laptop ----------
main: DDDDDDDD main: CCCCCCCC
remotes/laptop/main: CCCCCCCC remotes/desktop/main: DDDDDDDD

2.3. Replication and conflict model 65

http://git-scm.com/

Apache CouchDB®, Release 3.3.3

Then a merge takes place. This is a special case: CCCCCCCC is one of the parent commits of DDDDDDDD, so the
laptop can fast forward update from CCCCCCCC to DDDDDDDD directly without having to do any complex merging.
This leaves the final state as:

—————————— desktop ---------- -—-------- laptop ----------
main: DDDDDDDD main: DDDDDDDD
remotes/laptop/main: CCCCCCCC remotes/desktop/main: DDDDDDDD

Now this is all and good, but you may wonder how this is relevant when thinking about CouchDB.

First, note what happens in the case when the merge algorithm fails. The changes are still propagated from the
remote repo into the local one, and are available in the remote tracking branch. So, unlike Unison, you know the
data is protected. It’s just that the local working copy may fail to update, or may diverge from the remote version.
It’s up to you to create and commit the combined version yourself, but you are guaranteed to have all the history
you might need to do this.

Note that while it is possible to build new merge algorithms into Git, the standard ones are focused on line-based
changes to source code. They don’t work well for XML or JSON if it’s presented without any line breaks.

The other interesting consideration is multiple peers. In this case you have multiple remote tracking branches,
some of which may match your local branch, some of which may be behind you, and some of which may be ahead
of you (i.e. contain changes that you haven’t yet merged):

main: AAAAAAAA

remotes/foo/main: BBBBBBBB
remotes/bar/main: CCCCCCCC
remotes/baz/main: AAAAAAAA

Note that each peer is explicitly tracked, and therefore has to be explicitly created. If a peer becomes stale or is no
longer needed, it’s up to you to remove it from your configuration and delete the remote tracking branch. This is
different from CouchDB, which doesn’t keep any peer state in the database.

Another difference between CouchDB and Git is that it maintains all history back to time zero - Git compaction
keeps diffs between all those versions in order to reduce size, but CouchDB discards them. If you are constantly
updating a document, the size of a Git repo would grow forever. It is possible (with some effort) to use “history
rewriting” to make Git forget commits earlier than a particular one.

What is the CouchDB replication protocol? Is it like Git?

Author
Jason Smith

Date
2011-01-29

Source
StackOverflow

Key points

If you know Git, then you know how Couch replication works. Replicating is very similar to pushing or pulling
with distributed source managers like Git.

CouchDB replication does not have its own protocol. A replicator simply connects to two DBs as a client, then
reads from one and writes to the other. Push replication is reading the local data and updating the remote DB; pull
replication is vice versa.

e Fun fact 1: The replicator is actually an independent Erlang application, in its own process. It connects to
both couches, then reads records from one and writes them to the other.

e Fun fact 2: CouchDB has no way of knowing who is a normal client and who is a replicator (let alone
whether the replication is push or pull). It all looks like client connections. Some of them read records.
Some of them write records.

66 Chapter 2. Replication

http://stackoverflow.com/questions/4766391/what-is-the-couchdb-replication-protocol-is-it-like-git

Apache CouchDB®, Release 3.3.3

Everything flows from the data model

The replication algorithm is trivial, uninteresting. A trained monkey could design it. It’s simple because the
cleverness is the data model, which has these useful characteristics:

1. Every record in CouchDB is completely independent of all others. That sucks if you want to do a JOIN or
a transaction, but it’s awesome if you want to write a replicator. Just figure out how to replicate one record,
and then repeat that for each record.

2. Like Git, records have a linked-list revision history. A record’s revision ID is the checksum of its own data.
Subsequent revision IDs are checksums of: the new data, plus the revision ID of the previous.

3. In addition to application data ({"name": "Jason", "awesome": true}), every record stores the evo-
lutionary time line of all previous revision IDs leading up to itself.

* Exercise: Take a moment of quiet reflection. Consider any two different records, A and B. If A’s
revision ID appears in B’s time line, then B definitely evolved from A. Now consider Git’s fast-forward
merges. Do you hear that? That is the sound of your mind being blown.

4. Gitisn’t really a linear list. It has forks, when one parent has multiple children. CouchDB has that too.

* Exercise: Compare two different records, A and B. A’s revision ID does not appear in B’s time line;
however, one revision ID, C, is in both A’s and B’s time line. Thus A didn’t evolve from B. B didn’t
evolve from A. But rather, A and B have a common ancestor C. In Git, that is a “fork.” In CouchDB,
it’s a “conflict.”

* In Git, if both children go on to develop their time lines independently, that’s cool. Forks totally support
that.

* In CouchDB, if both children go on to develop their time lines independently, that cool too. Conflicts
totally support that.

* Fun fact 3: CouchDB “conflicts” do not correspond to Git “conflicts.” A Couch conflict is a divergent
revision history, what Git calls a “fork.” For this reason the CouchDB community pronounces “conflict”
with a silent n: “co-flicked.”

5. Git also has merges, when one child has multiple parents. CouchDB sort of has that too.

* In the data model, there is no merge. The client simply marks one time line as deleted and continues
to work with the only extant time line.

« In the application, it feels like a merge. Typically, the client merges the data from each time line in
an application-specific way. Then it writes the new data to the time line. In Git, this is like copying and
pasting the changes from branch A into branch B, then committing to branch B and deleting branch A.
The data was merged, but there was no git merge.

» These behaviors are different because, in Git, the time line itself is important; but in CouchDB, the data
is important and the time line is incidental—it’s just there to support replication. That is one reason
why CouchDB’s built-in revisioning is inappropriate for storing revision data like a wiki page.

Final notes

At least one sentence in this writeup (possibly this one) is complete BS.

2.4 CouchDB Replication Protocol

Version
3

The CouchDB Replication Protocol is a protocol for synchronising JSON documents between 2 peers over
HTTP/1.1 by using the public CouchDB REST API and is based on the Apache CouchDB MVCC Data model.

2.4. CouchDB Replication Protocol 67

http://en.wikipedia.org/wiki/Multiversion_concurrency_control

Apache CouchDB®, Release 3.3.3

2.4.1 Preface
Language

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in
RFC 2119.

Goals

The primary goal of this specification is to describe the CouchDB Replication Protocol under the hood.

The secondary goal is to provide enough detailed information about the protocol to make it easy to build tools on
any language and platform that can synchronize data with CouchDB.

Definitions

JSON:
JSON (JavaScript Object Notation) is a text format for the serialization of structured data. It is described in
ECMA-262 and RFC 4627.

URI:
A URI is defined by RFC 3986. It can be a URL as defined in RFC 1738.

ID:
An identifier (could be a UUID) as described in RFC 4122.
Revision:
A MVCC token value of following pattern: N-sig where N is ALWAYS a positive integer and sig is the
Document signature (custom). Don’t mix it up with the revision in version control systems!
Leaf Revision:
The last Document Revision in a series of changes. Documents may have multiple Leaf Revisions (aka
Conflict Revisions) due to concurrent updates.
Document:
A document is a JSON object with an ID and Revision defined in _id and _rev fields respectively. A
Document’s ID MUST be unique within the Database where it is stored.
Database:
A collection of Documents with a unique URI.
Changes Feed:
A stream of Document-changing events (create, update, delete) for the specified Database.
Sequence ID:
An ID provided by the Changes Feed. It MUST be incremental, but MAY NOT always be an integer.
Source:
Database from where the Documents are replicated.
Target:
Database where the Documents are replicated to.
Replication:
The one-way directed synchronization process of Source and Target endpoints.
Checkpoint:
Intermediate Recorded Sequence ID used for Replication recovery.
Replicator:

A service or an application which initiates and runs Replication.

68 Chapter 2. Replication

https://datatracker.ietf.org/doc/html/rfc2119.html
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
https://datatracker.ietf.org/doc/html/rfc4627.html
https://datatracker.ietf.org/doc/html/rfc3986.html
https://datatracker.ietf.org/doc/html/rfc1738.html
https://datatracker.ietf.org/doc/html/rfc4122.html
http://en.wikipedia.org/wiki/Multiversion_concurrency_control

Apache CouchDB®, Release 3.3.3

Filter Function:
A special function of any programming language that is used to filter Documents during Replication (see
Filter Functions)

Filter Function Name:
An ID of a Filter Function that may be used as a symbolic reference (aka callback function) to apply the
related Filter Function to Replication.

Filtered Replication:
Replication of Documents from Source to Target using a Filter Function.

Full Replication:
Replication of all Documents from Source to Target.

Push Replication:
Replication process where Source is a local endpoint and Target is remote.

Pull Replication:
Replication process where Source is a remote endpoint and Target is local.

Continuous Replication:
Replication that “never stops”: after processing all events from the Changes Feed, the Replicator doesn’t
close the connection, but awaits new change events from the Source. The connection is kept alive by periodic
heartbeats.

Replication Log:
A special Document that holds Replication history (recorded Checkpoints and a few more statistics) between
Source and Target.

Replication ID:
A unique value that unambiguously identifies the Replication Log.

2.4.2 Replication Protocol Algorithm

The CouchDB Replication Protocol is not magical, but an agreement on usage of the public CouchDB HTTP REST
API to enable Documents to be replicated from Source to Target.

The reference implementation, written in Erlang, is provided by the couch_replicator module in Apache CouchDB.

Itis RECOMMENDED that one follow this algorithm specification, use the same HTTP endpoints, and run requests
with the same parameters to provide a completely compatible implementation. Custom Replicator implementations
MAY use different HTTP API endpoints and request parameters depending on their local specifics and they MAY
implement only part of the Replication Protocol to run only Push or Pull Replication. However, while such solutions
could also run the Replication process, they loose compatibility with the CouchDB Replicator.

Verify Peers

Verify Peers:

! 404 Not Found +---------------—--—--————————— + '
! e e L L | Check Source Existence | '
! | e et e + !
! | | HEAD /source | !
! | e i + !
! | | '
' | | 200 OK '
! | v '
! [i it + !
! | | Check Target Existence -———t !

(continues on next page)

2.4. CouchDB Replication Protocol 69

http://erlang.org
https://github.com/apache/couchdb/tree/main/src/couch_replicator

Apache CouchDB®, Release 3.3.3

(continued from previous page)

! Fommmm - + No

! | Abort | <-------------—-—-——-
! e +

' A

' I

' |

! | Failure

' e e - -

Get Peers Information:

The Replicator MUST ensure that both Source and Target exist by using HEAD /{db} requests.

Check Source Existence

Request:

HEAD /source HTTP/1.1

Host: localhost:5984
User-Agent: CouchDB

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Sat, 05 Oct 2013 08:50:39 GMT
Server: CouchDB (Erlang/O0TP)

70

Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

Check Target Existence

Request:

HEAD /target HTTP/1.1
Host: localhost:5984
User-Agent: CouchDB

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Sat, 05 Oct 2013 08:51:11 GMT
Server: CouchDB (Erlang/OTP)

Create Target?

In case of a non-existent Target, the Replicator MAY make a PUT /{db} request to create the Target:

Request:

PUT /target HTTP/1.1
Accept: application/json
Host: localhost:5984
User-Agent: CouchDB

Response:

HTTP/1.1 201 Created
Content-Length: 12

Content-Type: application/json
Date: Sat, 05 Oct 2013 08:58:41 GMT
Server: CouchDB (Erlang/OTP)

{

"ok": true

}

However, the Replicator’s PUT request MAY NOT succeeded due to insufficient privileges (which are granted by
the provided credential) and so receive a 401 Unauthorized or a 403 Forbidden error. Such errors SHOULD be

expected and well handled:

HTTP/1.1 500 Internal Server Error
Cache-Control: must-revalidate
Content-Length: 108

Content-Type: application/json
Date: Fri, 09 May 2014 13:50:32 GMT
Server: CouchDB (Erlang OTP)

{

"error": "unauthorized",

—localhost:5984/target"
}

"reason": "unauthorized to access or create database http://

2.4. CouchDB Replication Protocol

71

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Apache CouchDB®, Release 3.3.3

Abort

In case of a non-existent Source or Target, Replication SHOULD be aborted with an HTTP error response:

HTTP/1.1 500 Internal Server Error
Cache-Control: must-revalidate
Content-Length: 56

Content-Type: application/json
Date: Sat, 05 Oct 2013 08:55:29 GMT
Server: CouchDB (Erlang OTP)

{
"error": "db_not_found",
"reason": "could not open source"

Get Peers Information

T T +
' Verify Peers: !
. L + ;
! | Check Target Existence | !
. e + .
. | ;
! | 200 OK !
' | ;
B | - - = === === - - - - - +
|
I | - - - - =-=-=-=-=-=- - - - - +
' Get Peers Information: | !
, v !
' L + ;
! | Get Source Information | !
' e + ;
! | GET /source | !
! L + !
. | ;
! | 200 OK !
. v .
. e + :
! | Get Target Information | !
" L + ;
! | GET /target | !
. o + .
. | ;
! | 200 OK !
. | '
T | - - - === === - - - - - +
|
+ - - - - - - - - - - - - - - - - - - | - - - =-=-=-=-=-=-=--- - - +
' Find Common Ancestry: | !
. | !
. v ;
. e + ;
! | Generate Replication ID | !
. e + ;

(continues on next page)

72 Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

(continued from previous page)

The Replicator retrieves basic information both from Source and Target using GET /{db} requests. The GET
response MUST contain JSON objects with the following mandatory fields:

* instance_start_time (string): Always "0". (Returned for legacy reasons.)
* update_seq (number / string): The current database Sequence ID.

Any other fields are optional. The information that the Replicator needs is the update_seq field: this value will
be used to define a temporary (because Database data is subject to change) upper bound for changes feed listening
and statistic calculating to show proper Replication progress.

Get Source Information

Request:

GET /source HTTP/1.1
Accept: application/json
Host: localhost:5984
User-Agent: CouchDB

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 256

Content-Type: application/json
Date: Tue, 08 Oct 2013 07:53:08 GMT
Server: CouchDB (Erlang OTP)

{
"committed_update_seq": 61772,
"compact_running": false,
"db_name": "source",
"disk_format_version": 6,
"doc_count": 41961,
"doc_del_count": 3807,
"instance_start_time": "0",
"purge_seq": 0,

"sizes": {
"active": 70781613961,
"disk": 79132913799,
"external": 72345632950
3,
"update_seq": 61772

2.4. CouchDB Replication Protocol 73

Apache CouchDB®, Release 3.3.3

Get Target Information

Request:

GET /target/ HITP/1.1
Accept: application/json
Host: localhost:5984
User-Agent: CouchDB

Response:

HTTP/1.1 200 OK

Content-Length: 363

Content-Type: application/json
Date: Tue, 08 Oct 2013 12:37:01 GMT
Server: CouchDB (Erlang/OTP)

{
"compact_running": false,
"db_name": "target",
"disk_format_version": 5,
"doc_count": 1832,
"doc_del_count": 1,
"instance_start_time": "0",
"purge_seq": 0,

"sizes": {
"active": 50829452,
"disk": 77001455,
"external": 60326450
1},

"update_seq": "1841-gl1AAAADve]zLYWBgYM1gTmGQTO1Kzi9KdUhIMtbLSs1LLUstOk"

Find Common Ancestry

b o e e e L e D e L m e L m D m mm e Dl m il oo

' Get Peers Information:

! B i ittt ettt L T +

! | Get Target Information |

! e e e e L L e +

' I

+ - - - - - - - - - - - - - - - | - - = = = = = = = = = = - = - - - - - - -
|

+ - - - - - - - - - - - - - - - | - - = = = = = = = = = - - - - - - - - - -

' Find Common Ancestry: \"

! o +

! | Generate Replication ID |

! B ettt ettt +

' |

! I

! v

! R kbt e L L L e L e e +

! | Get Replication Log from Source |

! o +

! | GET /source/_local/replication-id |

(continues on next page)

74 Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

(continued from previous page)

| 200 OK

| 404 Not Found

\"
- +
| Get Replication Log from Target |
- +
| GET /target/_local/replication-id |
e +

I

| 200 OK

| 404 Not Found

v
B e T +
| Compare Replication Logs |
T T +

Generate Replication ID

Before Replication is started, the Replicator MUST generate a Replication ID. This value is used to track Replication
History, resume and continue previously interrupted Replication process.

The Replication ID generation algorithm is implementation specific. Whatever algorithm is used it MUST uniquely
identify the Replication process. CouchDB’s Replicator, for example, uses the following factors in generating a
Replication ID:

¢ Persistent Peer UUID value. For CouchDB, the local Server UUID is used

Source and Target URI and if Source or Target are local or remote Databases
If Target needed to be created

If Replication is Continuous

Any custom headers

Filter function code if used

Changes Feed query parameters, if any

Note:

See couch_replicator_ids.erl for an example of a Replication ID generation implementation.

2.4. CouchDB Replication Protocol

75

https://github.com/apache/couchdb/blob/main/src/couch_replicator/src/couch_replicator_ids.erl

Apache CouchDB®, Release 3.3.3

Retrieve Replication Logs from Source and Target

Once the Replication ID has been generated, the Replicator SHOULD retrieve the Replication Log from both
Source and Target using GET /{db}/_local/{docid}:

Request:

GET /source/_local/b3e44b920ee2951cb2e123b63044427a HTITP/1.1
Accept: application/json

Host: localhost:5984

User-Agent: CouchDB

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 1019

Content-Type: application/json
Date: Thu, 10 Oct 2013 06:18:56 GMT
ETag: "0-8"

Server: CouchDB (Erlang OTP)

{
"_id": "_local/b3e44b920ee2951cb2e123b63044427a",
Il_revll: "@—8",
"history": [
{

"doc_write_failures": 0,

"docs_read": 2,

"docs_written": 2,

"end_last_seq": 5,

"end_time": "Thu, 10 Oct 2013 05:56:38 GMT",
"missing_checked": 2,

"missing_found": 2,

"recorded_seq": 5,

"session_id": "d5a34cbbdafa70e®db5ch57d02a6b955",
"start_last_seq": 3,

"start_time": "Thu, 10 Oct 2013 05:56:38 GMT"

"doc_write_failures": 0,

"docs_read": 1,

"docs_written": 1,

"end_last_seq": 3,

"end_time": "Thu, 10 Oct 2013 05:56:12 GMT",
"missing_checked": 1,

"missing_found": 1,

"recorded_seq": 3,

"session_id": "11a79cdael719c362e9857cd1ddff09d",
"start_last_seq": 2,

"start_time": "Thu, 10 Oct 2013 ©5:56:12 GMT"

"doc_write_failures": 0,

"docs_read": 2,

"docs_written": 2,

"end_last_seq": 2,

"end_time": "Thu, 10 Oct 2013 05:56:04 GMT",

(continues on next page)

76 Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"missing_checked": 2,
"missing_found": 2,
"recorded_seq": 2,
"session_id": "77cdf93cde®05f15fch710£320c37c155",
"start_last_seq": 0,
"start_time": "Thu, 10 Oct 2013 05:56:04 GMT"
}
1,
"replication_id_version": 3,
"session_id": "d5a34cbbdafa70e0db5cb57d02a6b955",
"source_last_seq": 5

The Replication Log SHOULD contain the following fields:

* history (array of object): Replication history. Required

doc_write_failures (number): Number of failed writes

docs_read (number): Number of read documents

docs_written (number): Number of written documents

end_last_seq (number): Last processed Update Sequence ID

end_time (string): Replication completion timestamp in RFC 5322 format
missing_checked (number): Number of checked revisions on Source

missing_found (number): Number of missing revisions found on Target

recorded_seq (number): Recorded intermediate Checkpoint. Required

session_id (string): Unique session ID. Commonly, a random UUID value is used. Required
start_last_seq (number): Start update Sequence ID

start_time (string): Replication start timestamp in RFC 5322 format

* replication_id_version (number): Replication protocol version. Defines Replication ID calculation algo-
rithm, HTTP API calls and the others routines. Required

* session_id (string): Unique ID of the last session. Shortcut to the session_id field of the latest history
object. Required

* source_last_seq (number): Last processed Checkpoint. Shortcut to the recorded_seq field of the latest
history object. Required

This request MAY fall with a 404 Not Found response:

Request:

GET

Accept: application/json
Host: localhost:5984
User-Agent: CouchDB

/source/_local/b6cef528f67aala8a014dd1144b10e09 HTTP/1.1

Response:

HTTP/1.1 404 Object Not Found
Cache-Control: must-revalidate
Content-Length: 41

Content-Type: application/json
Date: Tue, 08 Oct 2013 13:31:10 GMT
Server: CouchDB (Erlang OTP)

(continues on next page)

2.4.

CouchDB Replication Protocol 77

https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc5322.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"error": "not_found",
"reason": "missing"

That’s OK. This means that there is no information about the current Replication so it must not have been run
previously and as such the Replicator MUST run a Full Replication.

Compare Replication Logs

If the Replication Logs are successfully retrieved from both Source and Target then the Replicator MUST determine
their common ancestry by following the next algorithm:

* Compare session_id values for the chronological last session - if they match both Source and Target have
a common Replication history and it seems to be valid. Use source_last_seq value for the startup Check-
point

¢ In case of mismatch, iterate over the history collection to search for the latest (chronologically) common
session_id for Source and Target. Use value of recorded_seq field as startup Checkpoint

If Source and Target has no common ancestry, the Replicator MUST run Full Replication.

Locate Changed Documents

. o + '
! dommeem > | Listen to Changes Feed | ----- + !
! | o + | !
! | | GET /source/_changes | [!
! | | POST /source/_changes | | !
! | e e + [!
' I I I '
! I I I '
! | There are new changes | | No more changes !
' I I I '
' I \'4 v T
! | e + Fom - + !
! | | Read Batch of Changes | | Replication Completed | '
! | o + o + '

I

I

(continues on next page)

78 Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

(continued from previous page)

| \%
! | e it + !
! | | Compare Documents Revisions | !
! | e e + !
! | | POST /target/_revs_diff | !
! | B e et L e + !
. | | '
! | 200 OK | '
. | v '
! | e + !
! o | Any Differences Found? | !
. e + '
. | '
! Yes | !
. | '
B | - - =-=-=-=-==-=- - - - - - - +
|
I | - - =-==-=-= === - - - - - +
' Replicate Changes: | '
. v '
. e + '
! | Fetch Next Changed Document | !
. e + '
T T T +

Listen to Changes Feed

When the start up Checkpoint has been defined, the Replicator SHOULD read the Source’s Changes Feed by using
a GET /{db}/_changes request. This request MUST be made with the following query parameters:

» feed parameter defines the Changes Feed response style: for Continuous Replication the continuous value
SHOULD be used, otherwise - normal.

* style=all_docs query parameter tells the Source that it MUST include all Revision leaves for each docu-
ment’s event in output.

» For Continuous Replication the heartbeat parameter defines the heartbeat period in milliseconds. The
RECOMMENDED value by default is 10000 (10 seconds).

 If a startup Checkpoint was found during the Replication Logs comparison, the since query parameter
MUST be passed with this value. In case of Full Replication it MAY be 0 (number zero) or be omitted.

Additionally, the filter query parameter MAY be specified to enable a filter function on Source side. Other
custom parameters MAY also be provided.

Read Batch of Changes

Reading the whole feed in a single shot may not be an optimal use of resources. It is RECOMMENDED to process
the feed in small chunks. However, there is no specific recommendation on chunk size since it is heavily dependent
on available resources: large chunks requires more memory while they reduce I/O operations and vice versa.

Note, that Changes Feed output format is different for a request with feed=normal and with feed=continuous query
parameter.

Normal Feed:

Request:

2.4. CouchDB Replication Protocol 79

Apache CouchDB®, Release 3.3.3

Accept: application/json
Host: localhost:5984
User-Agent: CouchDB

GET /source/_changes?feed=normal&style=all_docs&heartbeat=10000 HTTP/1.1

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Fri, 09 May 2014 16:20:41 GMT
Server: CouchDB (Erlang OTP)
Transfer-Encoding: chunked

{"results": [

"last_seq":78}

{"seq":14,"id":"f957f41e","changes": [{"rev":"3-46a3"}],"deleted": true}
{"seq":29,"id":"ddf339dd","changes": [{"rev":"10-304b"}]}
{"seq":37,"id":"d3cc62£f5","changes": [{"rev":"2-eec2"}],"deleted" : true}
{"seq":39,"id":"f13bd08b","changes": [{"rev":"1-b35d"}]}
{"seq":41,"id":"e0a99867","changes": [{"rev":"2-clc6"}]1}
{"seq":42,"id":"a75bdfc5","changes": [{"rev":"1-967a"}]}
{"seq":43,"id":"a5f467a0","changes": [{"rev":"1-5575"}]}
{"seq":45,"id":"470c3004","changes": [{"rev":"11-c292"}]}
{"seq":46,"id":"b1cb8508","changes": [{"rev":"10-ABC"}]}
{"seq":47,"id":"49ec0489","changes": [{"rev":"157-b01f"},{"rev":"123-6f7c"}]1}
{"seq":49,"id":"dad10379","changes": [{"rev":"1-9346"},{"rev":"6-5b8a"}]1}
{"seq":50,"id":"73464877","changes": [{"rev":"1-9f08"}]}
{"seq":51,"id":"7ae19302","changes": [{"rev":"1-57bf"}]}
{"seq":63,"id":"6a7a6c86","changes": [{"rev":"5-acf6"}],"deleted": true}
{"seq":64,"id":"dfb9850a","changes": [{"rev":"1-102f"}]1}
{"seq":65,"id":"c532afa7","changes": [{"rev":"1-6491"}]1}
{"seq":66,"id":"af8a9508","changes": [{"rev":"1-3db2"}]}
{"seq":67,"id":"caa3dded","changes": [{"rev":"1-6491"}]}
{"seq":68,"id":"79f3b4e9","changes": [{"rev":"1-102£f"}]}
{"seq":69,"id":"1d89d16f","changes": [{"rev":"1-3db2"}]1}
{"seq":71,"id":"abae7348","changes": [{"rev":"2-7051"}]1}
{"seq":77,"id":"6c25534f","changes": [{"rev":"9-CDE"}, {"rev":"3-00e7"}, {"rev
~":"1-ABC"}1}

{"seq":78,"id":"SpaghettiliithMeatballs","changes": [{"rev":"22-5f95"}]}

1,

Continuous Feed:

Request:

GET /source/_changes?feed=continuous&styl
Accept: application/json

Host: localhost:5984

User-Agent: CouchDB

e=all_docs&heartbeat=10000 HTTP/1.1

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Fri, 09 May 2014 16:22:22 GMT
Server: CouchDB (Erlang OTP)

(continues on next page)

80

Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

(continued from previous page)

Transfer-Encoding: chunked

{"seq":14,"id":"f957f41e","changes": [{"rev":"3-46a3"}],"deleted": true}
{"seq":29,"id":"ddf339dd","changes": [{"rev":"10-304b"}]}
{"seq":37,"id":"d3cc62f5","changes": [{"rev":"2-eec2"}],"deleted": true}
{"seq":39,"id":"f13bd08b","changes": [{"rev":"1-b35d"}]}
{"seq":41,"id":"e0a99867","changes": [{"rev":"2-c1c6"}]}
{"seq":42,"id":"a75bdfc5","changes": [{"rev":"1-967a"}]}
{"seq":43,"id":"a5f467a0","changes": [{"rev":"1-5575"}]1}
{"seq":45,"id":"470c3004","changes": [{"rev":"11-c292"}]}
{"seq":46,"id":"b1ch8508","changes": [{"rev":"10-ABC"}]}
{"seq":47,"id":"49ec0489","changes": [{"rev":"157-b01f"},{"rev":"123-6f7c"}]1}
{"seq":49,"id":"dad10379","changes": [{"rev":"1-9346"},{"rev":"6-5b8a"}]}
{"seq":50,"id":"73464877" ,"changes": [{"rev":"1-9f08"}]}
{"seq":51,"id":"7ae19302","changes": [{"rev":"1-57bf"}]}
{"seq":63,"id":"6a7a6c86","changes": [{"rev":"5-acf6"}],"deleted": true}
{"seq":64,"id":"dfb9850a","changes": [{"rev":"1-102f"}]}
{"seq":65,"id":"c532afa7","changes": [{"rev":"1-6491"}]}
{"seq":66,"id":"af8a9508","changes": [{"rev":"1-3db2"}]}
{"seq":67,"id":"caa3dded","changes": [{"rev":"1-6491"}]1}
{"seq":68,"id":"79f3b4e9","changes": [{"rev":"1-102f"}]1}
{"seq":69,"id":"1d89d16f","changes": [{"rev":"1-3db2"}]}
{"seq":71,"id":"abae7348","changes": [{"rev":"2-7051"}]}
{"seq":75,"id":"SpaghettiWithMeatballs","changes":[{"rev":"21-5949"}]}
{"seq":77,"id":"6c255","changes": [{"rev":"9-CDE"}, {"rev":"3-00e7"}, {"rev":
~"1-ABC"}]1}
{"seq":78,"id":"SpaghettiWWithMeatballs","changes":[{"rev":"22-5f95"}]}

For both Changes Feed formats record-per-line style is preserved to simplify iterative fetching and decoding JSON
objects with less memory footprint.

Calculate Revision Difference

After reading the batch of changes from the Changes Feed, the Replicator forms a JSON mapping object for Doc-
ument ID and related leaf Revisions and sends the result to Target via a POST /{db}/_revs_diff request:

Request:

POST /target/_revs_diff HTTP/1.1
Accept: application/json
Content-Length: 287
Content-Type: application/json
Host: localhost:5984

User-Agent: CouchDB

{
"baz": [
"2-7051cbe5c8faecd®85a3fa619e6e6337"
1,
"foo": [
"3-6a540f3d701ac518d3b9733d673c5484"
1,
"bar": [
"1-d4e501ab47de6b2000fc8a02£84a0c77",
"1-967a00dff5e02add41819138abb3284d"

(continues on next page)

2.4. CouchDB Replication Protocol

81

Apache CouchDB®, Release 3.3.3

(continued from previous page)

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 88

Content-Type: application/json
Date: Fri, 25 Oct 2013 14:44:41 GMT
Server: CouchDB (Erlang/O0TP)

{
"baz": {
"missing": [
"2-7051cbe5c8faecd085a3fa619e6e6337"
]
1,
"bar": {
"missing": [
"1-d4e501ab47de6b2000fc8a02f84a0c77"
]
}
}

In the response the Replicator receives a Document ID — Revisions mapping, but only for Revisions that do not
exist in Target and are REQUIRED to be transferred from Source.

If all Revisions in the request match the current state of the Documents then the response will contain an empty
JSON object:

Request

POST /target/_revs_diff HTTP/1.1
Accept: application/json
Content-Length: 160
Content-Type: application/json
Host: localhost:5984

User-Agent: CouchDB

{
"foo": [
"3-6a540f3d701ac518d3b9733d673c5484"
1,
"bar": [
"1-967a00dff5e02add41819138abb3284d"
]
}
Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 2

Content-Type: application/json
Date: Fri, 25 Oct 2013 14:45:00 GMT
Server: CouchDB (Erlang/OTP)

(continues on next page)

82 Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

(continued from previous page)

{3

Replication Completed

When there are no more changes left to process and no more Documents left to replicate, the Replicator finishes
the Replication process. If Replication wasn’t Continuous, the Replicator MAY return a response to client with

statistics about the process.

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 414

Content-Type: application/json
Date: Fri, 09 May 2014 15:14:19 GMT
Server: CouchDB (Erlang OTP)

{
"history": [
{
"doc_write_failures": 2,
"docs_read": 2,
"docs_written": O,
"end_last_seq": 2939,

"missing_checked": 1835,
"missing_found": 2,
"recorded_seq": 2939,

"start_last_seq": 0,

}
] ’
"ok": true,
"replication_id_version": 3,

"source_last_seq": 2939

"end_time": "Fri, 09 May 2014 15:14:19 GMT",

"session_id": "05918159f64842f1fe73e9e2157b2112",

"start_time": "Fri, 09 May 2014 15:14:18 GMT"

"session_id": "05918159f64842f1fe73e9e2157b2112",

Replicate Changes

Replicate Changes:

(continues on next page)

2.4. CouchDB Replication Protocol

83

Apache CouchDB®, Release 3.3.3

(continued from previous page)

v
. e + .
! - > | Fetch Next Changed Document | <-=—-----— - + !
! | e e ettt + | !
! | | GET /source/docid | | !
! | B et et T e + | !
' I | [
! I I I '
! | | 201 Created | !
! | | 200 OK 401 Unauthorized | !
! | | 403 Forbidden | !
' I | [
' | v | !
! | it + | !
! | +-————- | Document Has Changed Attachments? | | !
! | [B e e et e T e + | !
! I | | | !
' I | | [
' | I | Yes | .
' I I I I '
! | | v | '
! | | - + Yes R e e + '
! | | No | Are They Big Enough? | ------- > | Update Document on Target |

! | | o + e e e L e + !
! | | | | PUT /target/docid | '
! | | | e e e L L et + !
' I I | !
B | No .
! I I I !
' I I v '
! | | e ettt + !
! | RR— > | Put Document Into the Stack | !
! | B e et e T e + !
. | | .
. | | .
. | v ;
! | No o + !
! Fom - | Stack is Full? | !
! | B ittt + !
. | | .
! | | Yes !
. | | .
. | v .
! | o o + !
! | | Upload Stack of Documents to Target | !
! | o + !
! | | POST /target/_bulk_docs | !
! | B i ettt e T e + !
. | | .
! | | 201 Created !
. | v .
! | e e + !
! | | Ensure in Commit | !
! | B et + !
! | | POST /target/_ensure_full_commit | !
! | B ittt e + !

(continues on next page)

84 Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

(continued from previous page)

| 201 Created !

PUT /source/_local/replication-id |
| PUT /target/_local/replication-id | !

\%
! No B ittt e + !
! Fomm - | All Documents from Batch Processed? | !
1 + _____________________________________ + \l
1 | 1
! Yes | !
Al Al
|
B T i T [- - - === == == - - - - +
I
T T | - - -=-=-=-=-=-=-=--- - +
' Locate Changed Documents: | !
Al V Ll
1 + _____________________________________ + Ll
! | Listen to Changes Feed | !
1 + _____________________________________ + \l
1 1
T T +

Fetch Changed Documents

At this step the Replicator MUST fetch all Document Leaf Revisions from Source that are missed at Target. This
operation is effective if Replication WILL use previously calculated Revision differences since they define missing
Documents and their Revisions.

To fetch the Document the Replicator will make a GET /{db}/{docid} request with the following query param-
eters:

e revs=true: Instructs the Source to include the list of all known revisions into the Document in the
_revisions field. This information is needed to synchronize the Document’s ancestors history between
Source and Target

* The open_revs query parameter contains a JSON array with a list of Leaf Revisions that are needed to be
fetched. If the specified Revision exists then the Document MUST be returned for this Revision. Otherwise,
Source MUST return an object with the single field missing with the missed Revision as the value. In case
the Document contains attachments, Source MUST return information only for those ones that had been
changed (added or updated) since the specified Revision values. If an attachment was deleted, the Document
MUST NOT have stub information for it

* latest=true: Ensures, that Source will return the latest Document Revision regardless of which one was
specified in the open_revs query parameter. This parameter solves a race condition problem where the
requested Document may be changed in between this step and handling related events on the Changes Feed

In the response Source SHOULD return multipart/mixed or respond instead with application/json un-
less the Accept header specifies a different mime type. The multipart/mixed content type allows handling the
response data as a stream, since there could be multiple documents (one per each Leaf Revision) plus several attach-
ments. These attachments are mostly binary and JSON has no way to handle such data except as base64 encoded
strings which are very ineffective for transfer and processing operations.

2.4. CouchDB Replication Protocol 85

https://tools.ietf.org/html/rfc7231#section-5.3.2

Apache CouchDB®, Release 3.3.3

With a multipart/mixed response the Replicator handles multiple Document Leaf Revisions and their attach-
ments one by one as raw data without any additional encoding applied. There is also one agreement to make data
processing more effective: the Document ALWAYS goes before its attachments, so the Replicator has no need
to process all the data to map related Documents-Attachments and may handle it as stream with lesser memory

footprint.

Request:

GET /source/SpaghettiWithMeatballs?revs=true&open_revs=[%225-00ecbbc¥%22,
—%221-917fa23%22,%223-6bcedf1%22]&latest=true HTTP/1.1

Accept: multipart/mixed

Host: localhost:5984

User-Agent: CouchDB

Response:

HTTP/1.1 200 OK

Content-Type: multipart/mixed; boundary="7b1596fc4940bclbe725ad67flleclc4"”
Date: Thu, 07 Nov 2013 15:10:16 GMT

Server: CouchDB (Erlang OTP)

Transfer-Encoding: chunked

--7b1596£fc4940bclbe725ad67flleclc4
Content-Type: application/json

{
"_id": "SpaghettiWithMeatballs",
"_rev": "1-917fa23",
"_revisions": {
"ids": [
"917fa23"
1,
"start": 1
1,
"description": "An Italian-American delicious dish",
"ingredients": [
"spaghetti",
"tomato sauce",
"meatballs"”
1,
"name": "Spaghetti with meatballs"
}
--7b1596fc4940bclbe725ad67f1leclc4
Content-Type: multipart/related; boundary="a81a77b0ca68389dda3243a43ca946£f2"

--a81a77b0ca68389dda3243a43ca946£f2
Content-Type: application/json

{
"_attachments": {
"recipe.txt": {
"content_type": "text/plain",
"digest": "md5-R5CrCb6fX10Y46AqtNnO®oQ=="",
"follows": true,
"length": 87,
"revpos": 7

(continues on next page)

86

Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"_id": "SpaghettiWithMeatballs",
"_rev": "7-474f12e",
"_revisions": {
"ids": [
"474f12e",
"5949cfc",
"®0ecbbc",
"£c997b6",
"3552c87",
"404838b",
"5defd9od",
"dcledbe"
1,
"start": 7
3,
"description": "An Italian-American delicious dish",
"ingredients": [
"spaghetti",
"tomato sauce",
"meatballs",
"love"
1,
"name": "Spaghetti with meatballs"
}
--a81a77b0ca68389dda3243a43ca9461f2
Content-Disposition: attachment; filename="recipe.txt"
Content-Type: text/plain
Content-Length: 87

. Cook spaghetti

. Cook meetballs
Mix them

Add tomato sauce

OV WN R

PROFIT!
--a81a77b0ca68389dda3243a43ca946£f2--

--7b1596fc4940bclbe725ad67flleclc4
Content-Type: application/json; error="true"

{"missing":"3-6bcedf1"}
--7b1596£fc4940bclbe725ad67flleclcd--

After receiving the response, the Replicator puts all the received data into a local stack for further bulk upload
to utilize network bandwidth effectively. The local stack size could be limited by number of Documents or bytes
of handled JSON data. When the stack is full the Replicator uploads all the handled Document in bulk mode to
the Target. While bulk operations are highly RECOMMENDED to be used, in certain cases the Replicator MAY
upload Documents to Target one by one.

Note: Alternative Replicator implementations MAY use alternative ways to retrieve Documents from Source.
For instance, PouchDB doesn’t use the Multipart API and fetches only the latest Document Revision with inline
attachments as a single JSON object. While this is still valid CouchDB HTTP API usage, such solutions MAY
require a different API implementation for non-CouchDB Peers.

2.4. CouchDB Replication Protocol 87

https://github.com/pouchdb/pouchdb/blob/master/packages/node_modules/pouchdb-replication/src/replicate.js

Apache CouchDB®, Release 3.3.3

Upload Batch of Changed Documents

To upload multiple Documents in a single shot the Replicator sends a POST /{db}/_bulk_docs request to Target

with payload containing a JSON object with the following mandatory fields:

* docs (array of objects): List of Document objects to update on Target. These Documents MUST contain
the _revisions field that holds a list of the full Revision history to let Target create Leaf Revisions that

correctly preserve ancestry

* new_edits (boolean): Special flag that instructs Target to store Documents with the specified Revision (field

_rev) value as-is without generating a new revision. Always false

The request also MAY contain X-Couch-Full-Commit that used to control CouchDB <3.0 behavior when delayed

commits were enabled. Other Peers MAY ignore this header or use it to control similar local feature.

Request:

{

"docs":

POST /target/_bulk_docs HTTP/1.1
Accept: application/json
Content-Length: 826
Content-Type:application/json
Host: localhost:5984

User-Agent:
X-Couch-Full-Commit: false

CouchDB

[

"_id": "SpaghettiWithMeatballs",
"_rev": "1-917fa2381192822767£f010b95b45325b",
"_revisions": {

"ids": [

"917£a2381192822767£010b95b45325b"

1,

"start": 1
1,
"description": "An Italian-American delicious dish",
"ingredients": [

"spaghetti",

"tomato sauce",

"meatballs"

1,

name": "Spaghetti with meatballs”

"_id": "LambStew",
"_rev": "1-34c318924a8f327223eed702ddfdc66d",
"_revisions": {
"ids": [
"34c318924a8£327223eed702ddfdco6d"

] b
"start": 1
1
"servings": 6,
"subtitle": "Delicious with scone topping",

"title": "Lamb Stew"

"_id": "FishStew",

(continues on next page)

88

Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"_rev": "1-9¢65296036141e575d32ba9c034dd3ee",
"_revisions": {
"ids": [
"9c65296036141e575d32ba9c034dd3ee"

1,
"start": 1
1,
"servings": 4,
"subtitle": "Delicious with fresh bread",

"title": "Fish Stew"
}

1,
"new_edits": false

In its response Target MUST return a JSON array with a list of Document update statuses. If the Document has
been stored successfully, the list item MUST contain the field ok with true value. Otherwise it MUST contain
error and reason fields with error type and a human-friendly reason description.

Document updating failure isn’t fatal as Target MAY reject the update for its own reasons. It's RECOMMENDED
to use error type forbidden for rejections, but other error types can also be used (like invalid field name etc.).
The Replicator SHOULD NOT retry uploading rejected documents unless there are good reasons for doing so (e.g.
there is special error type for that).

Note that while a update may fail for one Document in the response, Target can still return a 201 Created response.
Same will be true if all updates fail for all uploaded Documents.

Response:
HTTP/1.1 201 Created
Cache-Control: must-revalidate
Content-Length: 246
Content-Type: application/json
Date: Sun, 10 Nov 2013 19:02:26 GMT
Server: CouchDB (Erlang/OTP)
[
{
"ok": true,
"id": "SpaghettiWithMeatballs",
"rev":" 1-917fa2381192822767f010b95b45325b"
1,
{
"ok": true,
"id": "FishStew",
"rev": "1-9c65296036141e575d32ba9c®34dd3ee"
1,
{
"error": "forbidden",
"id": "LambStew",
"reason": "sorry",
"rev": "1-34c318924a8£327223eed702ddfdc66d"
}
1

2.4. CouchDB Replication Protocol 89

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2

Apache CouchDB®, Release 3.3.3

Upload Document with Attachments

There is a special optimization case when then Replicator WILL NOT use bulk upload of changed Documents.
This case is applied when Documents contain a lot of attached files or the files are too big to be efficiently encoded

with Base64.

For this case the Replicatorissues a /{db}/{docid} ?new_edits=falserequest withmultipart/related con-
tent type. Such a request allows one to easily stream the Document and all its attachments one by one without any

serialization overhead.

Request:

PUT /target/SpaghettiWithMeatballs?new_edits=false HTTP/1.1
Accept: application/json
Content-Length: 1030

Host: localhost:5984
User-Agent: CouchDB

--2fa48cba80d0®cdba7829931fe8acce9d
Content-Type: application/json

{
"_attachments": {
"recipe.txt": {
"content_type": "text/plain”,
"digest": "md5-R5CrCb6fX10Y46AqtNnO@oQ=="",
"follows": true,
"length": 87,
"revpos": 7
}
1,
"_id": "SpaghettiWithMeatballs",
"_rev": "7-474£12eb068c717243487a9505£6123b",
"_revisions": {
"ids": [
"474£12eb068c717243487a9505£6123b",
"5949cfcd437e3ee22d2d98a26d1a83bf",
"00ecbbc54e2al171156ec345b77d£d£59",
"£c997b62794a6268f2636a4al76efcd6",
""3552c87351aadcledbea246lale8113a",
"404838bc2862ce76c6ebed®46f9eb542",
"5defd9d813628cea6e98196eb0ee8594"
1,
"start": 7
3,
"description": "An Italian-American delicious dish",
"ingredients": [
"spaghetti",
"tomato sauce",
"meatballs",
"love"
1,
"name": "Spaghetti with meatballs"
}
--2fa48cba80d0®cdba7829931fe8acce9d
Content-Disposition: attachment; filename="recipe.txt
Content-Type: text/plain

Content-Type: multipart/related; boundary="864d690aeb91f25d469dec6851fb57£2"

(continues on next page)

90

Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

(continued from previous page)

Content-Length: 87

. Cook spaghetti

. Cook meetballs
Mix them

Add tomato sauce

U WN R

PROFIT!

--2fa48cba80d0®cdba7829931fe8acce9d--

Response:

HTTP/1.1 201 Created

Cache-Control: must-revalidate
Content-Length: 105

Content-Type: application/json
Date: Fri, 08 Nov 2013 16:35:27 GMT
Server: CouchDB (Erlang/OTP)

{

"ok": true,

"id": "SpaghettiWithMeatballs",

"rev": "7-474f12eb068c717243487a9505f6123b"
}

Unlike bulk updating via POST /{db}/_bulk_docs endpoint, the response MAY come with a different status
code. For instance, in the case when the Document is rejected, Target SHOULD respond with a 403 Forbidden:

Response:

HTTP/1.1 403 Forbidden
Cache-Control: must-revalidate
Content-Length: 39

Content-Type: application/json
Date: Fri, 08 Nov 2013 16:35:27 GMT
Server: CouchDB (Erlang/OTP)

{
"error": "forbidden",
"reason": "sorry"

Replicator SHOULD NOT retry requests in case of a 401 Unauthorized, 403 Forbidden, 409 Conflict or 412
Precondition Failed since repeating the request couldn’t solve the issue with user credentials or uploaded data.

Ensure In Commit

Once a batch of changes has been successfully uploaded to Target, the Replicator issues a POST /{db}/
_ensure_full_commit request to ensure that every transferred bit is laid down on disk or other persistent storage
place. Target MUST return 201 Created response with a JSON object containing the following mandatory fields:

* instance_start_time (string): Timestamp of when the database was opened, expressed in microseconds
since the epoch

* ok (boolean): Operation status. Constantly true

Request:

2.4. CouchDB Replication Protocol 91

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.13
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.13
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2

Apache CouchDB®, Release 3.3.3

POST /target/_ensure_full_commit HTTP/1.1
Accept: application/json

Content-Type: application/json

Host: localhost:5984

Response:

HTTP/1.1 201 Created

Cache-Control: must-revalidate
Content-Length: 53

Content-Type: application/json
Date: Web, 06 Nov 2013 18:20:43 GMT
Server: CouchDB (Erlang/OTP)

{
"instance_start_time": "0",
"ok": true

Record Replication Checkpoint

Since batches of changes were uploaded and committed successfully, the Replicator updates the Replication Log
both on Source and Target recording the current Replication state. This operation is REQUIRED so that in the case
of Replication failure the replication can resume from last point of success, not from the very beginning.

Replicator updates Replication Log on Source:

Request:

PUT /source/_local/afa899a9e59589c3d4ce5668e3218aef HTTP/1.1
Accept: application/json

Content-Length: 591

Content-Type: application/json

Host: localhost:5984

User-Agent: CouchDB

{
"_id": "_local/afa899a9e59589c3d4ce5668e3218aef",
"_rev": "0-1",
"_revisions": {
"ids": [
"31£36e40158e717fbe9842e227b389df"
1,
"start": 1
3,
"history": [
{
"doc_write_failures": 0,
"docs_read": 6,
"docs_written": 6,
"end_last_seq": 26,
"end_time": "Thu, 07 Nov 2013 09:42:17 GMT",
"missing_checked": 6,
"missing_found": 6,
"recorded_seq": 26,
"session_id": "04bfl15bfld9fa8aclabc67d0c3e04f07",
"start_last_seq": 0,

(continues on next page)

92 Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"start_time": "Thu, 07 Nov 2013 09:41:43 GMT"
}
1,
"replication_id_version": 3,
"session_id": "04bf15bfld9fa8aclabc67d0c3e®4f07",
"source_last_seq": 26

Response:

HTTP/1.1 201 Created

Cache-Control: must-revalidate
Content-Length: 75

Content-Type: application/json
Date: Thu, 07 Nov 2013 09:42:17 GMT
Server: CouchDB (Erlang/OTP)

{
"id": "_local/afa899a9e59589c3d4ce5668e3218aef",
"ok": true,
"rev": "0-2"

}

...and on Target too:

Request:

PUT /target/_local/afa899a9e59589c3d4ce5668e3218aef HTTP/1.1
Accept: application/json

Content-Length: 591

Content-Type: application/json

Host: localhost:5984

User-Agent: CouchDB

{
"_id": "_local/afa899a9e59589c3d4ce5668e3218aef",
"_rev": "1-31f36e40158e717fbe9842e227b389df",
"_revisions": {
"ids": [
"31£36e40158e717fbe9842e227b389df"
1,
"start": 1
b
"history": [
{
"doc_write_failures": 0,
"docs_read": 6,
"docs_written": 6,
"end_last_seq": 26,
"end_time": "Thu, 07 Nov 2013 09:42:17 GMT",
"missing_checked": 6,
"missing_found": 6,
"recorded_seq": 26,
"session_id": "04bfl15bfld9fa8aclabc67d0c3e04f07",
"start_last_seq": 0,
"start_time": "Thu, 07 Nov 2013 09:41:43 GMT"

(continues on next page)

2.4. CouchDB Replication Protocol 93

Apache CouchDB®, Release 3.3.3

(continued from previous page)

1,
"replication_id_version": 3,

"source_last_seq": 26

3

"session_id": "04bfl15bfld9fa8aclabc67d0c3e®04£f07",

Response:

HTTP/1.1 201 Created

Cache-Control: must-revalidate
Content-Length: 106

Content-Type: application/json
Date: Thu, 07 Nov 2013 09:42:17 GMT
Server: CouchDB (Erlang/OTP)

{
"id": "_local/afa899a9e59589c3d4ce5668e3218aef",
"ok": true,
"rev": "2-9b5dle36bed6ae®8611466e30af1259a"

}

Continue Reading Changes

Once a batch of changes had been processed and transferred to Target successfully, the Replicator can continue to
listen to the Changes Feed for new changes. If there are no new changes to process the Replication is considered
to be done.

For Continuous Replication, the Replicator MUST continue to wait for new changes from Source.

2.4.3 Protocol Robustness

Since the CouchDB Replication Protocol works on top of HTTP, which is based on TCP/IP, the Replicator
SHOULD expect to be working within an unstable environment with delays, losses and other bad surprises that
might eventually occur. The Replicator SHOULD NOT count every HTTP request failure as a fatal error. It
SHOULD be smart enough to detect timeouts, repeat failed requests, be ready to process incomplete or malformed
data and so on. Data must flow - that’s the rule.

2.4.4 Error Responses

In case something goes wrong the Peer MUST respond with a JSON object with the following REQUIRED fields:

* error (string): Error type for programs and developers

* reason (string): Error description for humans

94

Chapter 2. Replication

Apache CouchDB®, Release 3.3.3

Bad Request

If a request contains malformed data (like invalid JSON) the Peer MUST respond with a HTTP 400 Bad Request
and bad_request as error type:

{
"error": "bad_request",
"reason": "invalid json"

Unauthorized

If a Peer REQUIRES credentials be included with the request and the request does not contain acceptable creden-
tials then the Peer MUST respond with the HTTP 401 Unauthorized and unauthorized as error type:

{

"error": "unauthorized",

"reason": "Name or password is incorrect"
3
Forbidden

If a Peer receives valid user credentials, but the requester does not have sufficient permissions to perform the
operation then the Peer MUST respond with a HTTP 403 Forbidden and forbidden as error type:

{

"error": "forbidden",
"reason": "You may only update your own user document."

Resource Not Found

If the requested resource, Database or Document wasn’t found on a Peer, the Peer MUST respond with a HTTP
404 Not Found and not_£found as error type:

{

"error": "not_found",
"reason": "database \"target\" does not exists"

Method Not Allowed

If an unsupported method was used then the Peer MUST respond with a HTTP 405 Method Not Allowed and
method_not_allowed as error type:

{

"error": "method_not_allowed",
"reason": "Only GET, PUT, DELETE allowed"

2.4. CouchDB Replication Protocol 95

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6

Apache CouchDB®, Release 3.3.3

Resource Conflict

A resource conflict error occurs when there are concurrent updates of the same resource by multiple clients. In
this case the Peer MUST respond with a HTTP 409 Conflict and conflict as error type:

{

"error": "conflict",
"reason": "document update conflict"

Precondition Failed

The HTTP 412 Precondition Failed response may be sent in case of an attempt to create a Database (error type
db_exists) that already exists or some attachment information is missing (error type missing_stub). There is
no explicit error type restrictions, but it is RECOMMEND to use error types that are previously mentioned:

{
"error": "db_exists",
"reason": "database \"target\" exists"

Server Error

Raised in case an error is faral and the Replicator cannot do anything to continue Replication. In this case the
Replicator MUST return a HTTP 500 Internal Server Error response with an error description (no restrictions on
error type applied):

{
"error": "worker_died",
"reason": "kaboom!"

2.4.5 Optimisations

There are RECOMMENDED approaches to optimize the Replication process:
* Keep the number of HTTP requests at a reasonable minimum
* Try to work with a connection pool and make parallel/multiple requests whenever possible
* Don’t close sockets after each request: respect the keep-alive option
¢ Use continuous sessions (cookies, etc.) to reduce authentication overhead
* Try to use bulk requests for every operations with Documents
¢ Find out optimal batch size for Changes feed processing
 Preserve Replication Logs and resume Replication from the last Checkpoint whenever possible
* Optimize filter functions: let them run as fast as possible

* Get ready for surprises: networks are very unstable environments

96 Chapter 2. Replication

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.13
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Apache CouchDB®, Release 3.3.3

2.4.6 API Reference

Common Methods

HEAD /{db} — Check Database existence

GET /{db} — Retrieve Database information
GET /{db}/_local/{docid} — Read the last Checkpoint
PUT /{db}/_local/{docid} — Save a new Checkpoint

For Target

PUT /{db} — Create Target if it not exists and the option was provided

POST /{db}/_revs_diff — Locate Revisions that are not known to Target

POST /{db}/_bulk_docs — Upload Revisions to Target

PUT /{db}/{docid} — Upload a single Document with attachments to Target

POST /{db}/_ensure_full_commit — Ensure that all changes are stored on disk

For Source

e GET /{db}/_changes — Fetch changes since the last pull of Source
e POST /{db}/_changes — Fetch changes for specified Document IDs since the last pull of Source

* GET /{db}/{docid} — Retrieve a single Document from Source with attachments

2.4.7 Reference

* Refuge RCouch wiki
¢ CouchBase Lite IOS wiki

2.4. CouchDB Replication Protocol 97

https://github.com/refuge/rcouch/wiki/Replication-Algorithm
https://github.com/couchbase/couchbase-lite-ios/wiki/Replication-Algorithm

Apache CouchDB®, Release 3.3.3

98 Chapter 2. Replication

CHAPTER
THREE

DESIGN DOCUMENTS

CouchDB supports special documents within databases known as “design documents”. These documents, mostly
driven by JavaScript you write, are used to build indexes, validate document updates, format query results, and
filter replications.

3.1 Design Documents

In this section we’ll show how to write design documents, using the built-in JavaScript Query Server.

But before we start to write our first document, let’s take a look at the list of common objects that will be used
during our code journey - we’ll be using them extensively within each function:

* Database information object
* Request object

* Response object

* UserCtx object

* Database Security object

* Guide to JavaScript Query Server

3.1.1 Creation and Structure
Design documents contain functions such as view and update functions. These functions are executed when re-
quested.

Design documents are denoted by an id field with the format _design/{name}. Their structure follows the example
below.

Example:
{
"_id": "_design/example",
"views": {
"view-number-one": {
"map": "function (doc) {/* function code here - see below */}"
1,
"view-number-two": {
"map": "function (doc) {/* function code here - see below */}",
"reduce": "function (keys, values, rereduce) {/* function code here - see.,
—below */}"
}
1,
"updates": {
"updatefunl": "function(doc,req) {/* function code here - see below */}",

(continues on next page)

99

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"updatefun2": "function(doc,req) {/* function code here - see below */}"
1,
"filters": {
"filterfunctionl": "function(doc, req){ /* function code here - see below */ }
1,
"validate_doc_update": "function(newDoc, oldDoc, userCtx, secObj) { /* function,
—code here - see below */ }",
"language": "javascript"

}

As you can see, a design document can include multiple functions of the same type. The example defines two views,
both of which have a map function and one of which has a reduce function. It also defines two update functions
and one filter function. The Validate Document Update function is a special case, as each design document cannot
contain more than one of those.

3.1.2 View Functions

Views are the primary tool used for querying and reporting on CouchDB databases.

Map Functions

mapfun(doc)

Arguments
* doc — The document that is being processed

Map functions accept a single document as the argument and (optionally) emit () key/value pairs that are stored
in a view.

function (doc) {
if (doc.type === 'post' && doc.tags && Array.isArray(doc.tags)) {
doc.tags.forEach(function (tag) {
emit(tag.toLowerCase(), 1);
B;
}
}

In this example a key/value pair is emitted for each value in the tags array of a document with a type of “post”.
Note that emit () may be called many times for a single document, so the same document may be available by
several different keys.

Also keep in mind that each document is sealed to prevent the situation where one map function changes document
state and another receives a modified version.

For efficiency reasons, documents are passed to a group of map functions - each document is processed by a group
of map functions from all views of the related design document. This means that if you trigger an index update for
one view in the design document, all others will get updated too.

Since version 1.1.0, map supports CommonJS modules and the require () function.

100 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

Reduce and Rereduce Functions

redfun(keys, values [rereduce])

Arguments

» keys — Array of pairs of key-docid for related map function results. Always null if
rereduce is running (has true value).

* values — Array of map function result values.
» rereduce — Boolean flag to indicate a rereduce run.

Returns
Reduces values

Reduce functions take two required arguments of keys and values lists - the result of the related map function - and
an optional third value which indicates if rereduce mode is active or not. Rereduce is used for additional reduce
values list, so when it is true there is no information about related keys (first argument is null).

Note that if the result of a reduce function is longer than the initial values list then a Query Server error will be
raised. However, this behavior can be disabled by setting reduce_limit config option to false:

[query_server_config]
reduce_limit = false

While disabling reduce_limit might be useful for debug proposes, remember that the main task of reduce func-
tions is to reduce the mapped result, not to make it bigger. Generally, your reduce function should converge rapidly
to a single value - which could be an array or similar object.

Built-in Reduce Functions

Additionally, CouchDB has a set of built-in reduce functions. These are implemented in Erlang and run inside
CouchDB, so they are much faster than the equivalent JavaScript functions.

_approx_count_distinct

New in version 2.2.

Approximates the number of distinct keys in a view index using a variant of the HyperLoglLog algorithm. This
algorithm enables an efficient, parallelizable computation of cardinality using fixed memory resources. CouchDB
has configured the underlying data structure to have a relative error of ~2%.

As this reducer ignores the emitted values entirely, an invocation with group=true will simply return a value of 1
for every distinct key in the view. In the case of array keys, querying the view with a group_level specified will
return the number of distinct keys that share the common group prefix in each row. The algorithm is also cognizant
of the startkey and endkey boundaries and will return the number of distinct keys within the specified key range.

A final note regarding Unicode collation: this reduce function uses the binary representation of each key in the
index directly as input to the HyperLoglLog filter. As such, it will (incorrectly) consider keys that are not byte
identical but that compare equal according to the Unicode collation rules to be distinct keys, and thus has the
potential to overestimate the cardinality of the key space if a large number of such keys exist.

_count

Counts the number of values in the index with a given key. This could be implemented in JavaScript as:

// could be replaced by _count
function(keys, values, rereduce) {
if (rereduce) {
return sum(values);
} else {
return values.length;

(continues on next page)

3.1. Design Documents 101

https://en.wikipedia.org/wiki/HyperLogLog

Apache CouchDB®, Release 3.3.3

(continued from previous page)

_Stats

Computes the following quantities for numeric values associated with each key: sum, min, max, count, and
sumsqr. The behavior of the _stats function varies depending on the output of the map function. The sim-
plest case is when the map phase emits a single numeric value for each key. In this case the _stats function is
equivalent to the following JavaScript:

// could be replaced by _stats
function(keys, values, rereduce) {
if (rereduce) {
return {
"sum': values.reduce(function(a, b) { return a + b.sum }, 0),
'min': values.reduce(function(a, b) { return Math.min(a, b.min) },.
Infinity),

v v

max': values.reduce(function(a, b) { return Math.max(a, b.max) }, -
~Infinity),
"count': values.reduce(function(a, b) { return a + b.count }, 0),
'sumsqr': values.reduce(function(a, b) { return a + b.sumsqr }, 0)
}
} else {
return {

sum': sum(values),

min': Math.min.apply(null, values),
'max': Math.max.apply(null, values),
'count': values.length,
"sumsqr': (function() {

var sumsqr = 0;

values. forEach(function (value) {
sumsqr += value * value;

H;

return sumsqr;

DO,

The _stats function will also work with “pre-aggregated” values from a map phase. A map function that emits
an object containing sum, min, max, count, and sumsqr keys and numeric values for each can use the _stats
function to combine these results with the data from other documents. The emitted object may contain other keys
(these are ignored by the reducer), and it is also possible to mix raw numeric values and pre-aggregated objects in
a single view and obtain the correct aggregated statistics.

Finally, _stats can operate on key-value pairs where each value is an array comprised of numbers or pre-
aggregated objects. In this case every value emitted from the map function must be an array, and the arrays must
all be the same length, as _stats will compute the statistical quantities above independently for each element in
the array. Users who want to compute statistics on multiple values from a single document should either emit each
value into the index separately, or compute the statistics for the set of values using the JavaScript example above
and emit a pre-aggregated object.

_sum

In its simplest variation, _sum sums the numeric values associated with each key, as in the following JavaScript:

102 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

// could be replaced by _sum
function(keys, values) {
return sum(values);

}

As with _stats, the _sum function offers a number of extended capabilities. The _sum function requires that map
values be numbers, arrays of numbers, or objects. When presented with array output from a map function, _sum
will compute the sum for every element of the array. A bare numeric value will be treated as an array with a single
element, and arrays with fewer elements will be treated as if they contained zeroes for every additional element in
the longest emitted array. As an example, consider the following map output:

{"total_rows":5, "offset":0, "rows": [
{"id":"id1", "key":"abc", "value": 2},
{"id":"id2", "key":"abc", "value": [3,5,7]1},
{"id":"id2", "key":"def", "value": [0,0,0,42]},
{"id":"id2", "key":"ghi", "value": 1},
{"id":"id1", "key":"ghi", "value": 3}

13

The _sum for this output without any grouping would be:

{"rows": [
{"key":null, "value": [9,5,7,42]}
13

while the grouped output would be

{"rows": [
{"key":"abc", "value": [5,5,7]},
{"key":"def", "value": [0,0,0,42]},
{"key":"ghi", "value": 4

13

This is in contrast to the behavior of the _stats function which requires that all emitted values be arrays of identical
length if any array is emitted.

It is also possible to have _sum recursively descend through an emitted object and compute the sums for every field
in the object. Objects cannot be mixed with other data structures. Objects can be arbitrarily nested, provided that
the values for all fields are themselves numbers, arrays of numbers, or objects.

Note: Why don’t reduce functions support CommonJS modules?

While map functions have limited access to stored modules through require (), there is no such feature for reduce
functions. The reason lies deep inside the way map and reduce functions are processed by the Query Server. Let’s
take a look at map functions first:

1. CouchDB sends all map functions in a processed design document to the Query Server.
2. the Query Server handles them one by one, compiles and puts them onto an internal stack.

3. after all map functions have been processed, CouchDB will send the remaining documents for indexing, one
by one.

4. the Query Server receives the document object and applies it to every function from the stack. The emitted
results are then joined into a single array and sent back to CouchDB.

Now let’s see how reduce functions are handled:

1. CouchDB sends as a single command the list of available reduce functions with the result list of key-value
pairs that were previously returned from the map functions.

3.1. Design Documents 103

Apache CouchDB®, Release 3.3.3

2. the Query Server compiles the reduce functions and applies them to the key-value lists. The reduced result

is sent back to CouchDB.

As you may note, reduce functions are applied in a single shot to the map results while map functions are applied
to documents one by one. This means that it’s possible for map functions to precompile Common]JS libraries and
use them during the entire view processing, but for reduce functions they would be compiled again and again for

each view result reduction, which would lead to performance degradation.

3.1.3 Show Functions

Warning: Show functions are deprecated in CouchDB 3.0, and will be removed in CouchDB 4.0.

showfun (doc, req)

Arguments
* doc — The document that is being processed; may be omitted.
* req — Request object.

Returns
Response object

Return type
object or string

Show functions are used to represent documents in various formats, commonly as HTML pages with nice format-
ting. They can also be used to run server-side functions without requiring a pre-existing document.

Basic example of show function could be:

function(doc, req){

if (doc) {
return "Hello from " + doc._id + "!'";
} else {

return "Hello, world!";

}

Also, there is more simple way to return json encoded data:

function(doc, req){
return {
"json': {
'id"': doc['_id'],

rev': doc['_rev']

and even files (this one is CouchDB logo):

function(doc, req){

return {
'headers': {
'Content-Type' : 'image/png’',
1,
'base64': ''.concat(

(continues on next page)

104 Chapter 3.

Design Documents

Apache CouchDB®, Release 3.3.3

(continued from previous page)

' 1 VBORWOKGgOAAAANSUhEUgAAABAAAAAQCAMAAAAOLQITAAAASV',
"BMVEUAAAD////////////////////////5uxr3xEBn////////////////wDBL/",
' AADuBAe9EB3IEBz/7+//X1/qBQn2AgP/£3/ilpzsDxfpChDtDhXeCA76AQH/v7 ",
' /84eLyWV/uc3bJPEf/Dw/uw8bRWmP1h4zxS1D6YGHUQOf6g4XyQkXvCA36MDHG ',
'wMH/z8/yAwX640Deh47BHiv/Ly/20dLQLTj98PDXWmP/Pz//39/wGyJ71y9JAA",
' AADHRST1MAbw8v£08,/bz+Pv193jK/W3AAAAgO1EQVR4Xp3LRQ4DQRBDOQQTmAYS5 ",
'zMxw/401eiJ1HeUtv2X6RbNO1Uqj9gORMCuQOOVBIg4vMFeOpCWIWmDOW82£fZx ",
'vaND1c80G4vrdOgD8YwgpDYDxRgkSm5rwu®nQVBIuMg++pLXZyr5jnc1BaH4GT ',
'LvE1iY253nA3pVhQqdPt0f/erIkMGMB8xucAAAAASUVORK5CYITI=")

But what if you need to represent data in different formats via a single function? Functions registerType() and
provides () are your the best friends in that question:

function(doc, req){
provides('json', function(){
return {'json': doc}
B;
provides('html', function(){
return '<pre>' + toJSON(doc) + '</pre>'
b
provides('xml', function(){
return {
'headers': {'Content-Type': 'application/xml'},
'body' : ''.concat(
'<?xml version="1.0" encoding="utf-8"7?>\n',
'<doc>"',
(function(){
escape = function(s){
return s.replace(/"/g, '"")
.replace(/>/g, '>")
.replace(/</g, '<')
.replace(/&/g, '&');
1
var content = '';
for(var key in doc){
if(!doc.hasOwnProperty(key)) continue;
var value = escape(to]SON(doc[key]));
var key = escape(key);
content += ''.concat(
<" + key + '>',
value
'</' + key +

>

}

return content;

HOo,

'</doc>"'

}
1))
registerType('text-json', 'text/json')
provides('text-json', function(){
return toJSON(doc);
B

3.1. Design Documents 105

Apache CouchDB®, Release 3.3.3

This function may return html, json , xml or our custom fext json format representation of same document object
with same processing rules. Probably, the xml provider in our function needs more care to handle nested objects
correctly, and keys with invalid characters, but you’ve got the idea!

See also:
CouchDB Guide:

¢ Show Functions

3.1.4 List Functions

Warning: List functions are deprecated in CouchDB 3.0, and will be removed in CouchDB 4.0.

listfun(head, req)

Arguments
* head - View Head Information
* req — Request object.

Returns
Last chunk.

Return type
string

While Show Functions are used to customize document presentation, List Functions are used for the same purpose,
but on View Functions results.

The following list function formats the view and represents it as a very simple HTML page:

functionChead, req){
start({
'headers': {
'Content-Type': 'text/html'
}
B
send('<html><body><table>");
send('<tr><th>ID</th><th>Key</th><th>Value</th></tr>");
while(row = getRow()){
send('"'.concat(
'<tr>',
'<td>' + toJSON(row.id) + '</td>"',
'<td>" + toJSON(row.key) + '</td>",
'<td>' + toJSON(row.value) + '</td>",
'</tr>'
));
}
send('</table></body></html>");

Templates and styles could obviously be used to present data in a nicer fashion, but this is an excellent starting
point. Note that you may also use registerType() and provides () functions in a similar way as for Show
Functions! However, note that provides () expects the return value to be a string when used inside a list function,
so you’ll need to use start () to set any custom headers and stringify your JSON before returning it.

See also:

CouchDB Guide:

106 Chapter 3. Design Documents

http://guide.couchdb.org/editions/1/en/show.html

Apache CouchDB®, Release 3.3.3

 Transforming Views with List Functions

3.1.5 Update Functions

updatefun(doc, req)

Arguments
* doc — The document that is being processed.
* req — Request object

Returns

Two-element array: the first element is the (updated or new) document, which is committed
to the database. If the first element is null no document will be committed to the database.
If you are updating an existing document, it should already have an _id set, and if you are
creating a new document, make sure to set its _id to something, either generated based on
the input or the req.uuid provided. The second element is the response that will be sent

back to the caller.

Update handlers are functions that clients can request to invoke server-side logic that will create or update a doc-
ument. This feature allows a range of use cases such as providing a server-side last modified timestamp, updating

individual fields in a document without first getting the latest revision, etc.

When the request to an update handler includes a document ID in the URL, the server will provide the function
with the most recent version of that document. You can provide any other values needed by the update handler

function via the POST/PUT entity body or query string parameters of the request.

A basic example that demonstrates all use-cases of update handlers:

function(doc, req){
if (!doc){
if ('id' in req && req['id']){
// create new document
return [{'_id': req['id']}, 'New World']
}
// change nothing in database
return [null, 'Empty World']
}
doc['world'] = 'hello';
doc['edited_by'] = req['userCtx']['name']
return [doc, 'Edited World!']

3.1.6 Filter Functions

filterfun(doc, req)

Arguments
* doc — The document that is being processed
* req — Request object

Returns

Boolean value: true means that doc passes the filter rules, false means that it does not.

Filter functions mostly act like Show Functions and List Functions: they format, or filter the changes feed.

3.1. Design Documents

107

http://guide.couchdb.org/draft/transforming.html

Apache CouchDB®, Release 3.3.3

Classic Filters
By default the changes feed emits all database documents changes. But if you’re waiting for some special changes,
processing all documents is inefficient.

Filters are special design document functions that allow the changes feed to emit only specific documents that pass
filter rules.

Let’s assume that our database is a mailbox and we need to handle only new mail events (documents with the status
new). Our filter function would look like this:

function(doc, req){
// we need only ‘mail’ documents
if (doc.type != 'mail’'){
return false;

}
// we're interested only in ‘new ones
if (doc.status != 'new'){
return false;
}

return true; // passed!

Filter functions must return true if a document passed all the rules. Now, if you apply this function to the changes
feed it will emit only changes about “new mails”:

GET /somedatabase/_changes?filter=mailbox/new_mail HTTP/1.1

{"results": [

{"seq":"1-g1AAAAF9e]zLYWBg4MhgTmHgz8tPSTVOMDQy 1zMAQsMcoARTIkOS _P___

< 7MymBMZc4EC7MmIKSm]qWaYynEakaQAJJPsoaYwgE1JMO01TjQ3T2HgLM1LSU3LzEtNwa3fAaQ_HqQ_
-kQG3qgSQqnoCqvIYgCRDA5SACKpxPWOUCiMr9hFUegKi8T1j1A4hKkDuzAC2yZRo" ,"id" :
—"df8eca9da37dade42ee4d7aa3401£f1dd", "changes": [{"rev":"1-
—c2e0085a21d34falcecbbdc26a4ae657"}]1},

{"seq":"9-
—glAAAATre]yVKEsKwjAURUMrqCOXoCuQ5MUOOrI70XyppcaRY92J7kR30jupaSPUUgqiiwAu85By4t0AIThIYq
—SGF£4gEkvOyLPMsFtHRL8ZKaC1MOv3eq5ALP-X2a0G1xYKhgnONpmenjTO40_v5t0J3LV5itTES_
—UP3FX9ppcAACaVsQA038hNd_eVFt8Zk1V1jPqSPYLoHO6PIhGOCxq7-yhQcz-B4_
—fQCjFuqBjjewVF3E9cOROExSrpU_gHBTo5m","id" :"df8eca9da37dade42eedd7aa34024714",
—'"changes":[{"rev":"1-29d748a6e87b43db967fe338bch®8d74"}]1},

1,

"last_seq":"10-
—g1AAAATreJyVKEsKwjAURR9tQR25BF2B5GMaHdmdaNTk 1FL jyLHuRHei09Gd1LQRaimF1sALvOQcuLcAgGKkWK
—BALkoyzLPQhGc3GKSCqWEjrvfexVy6abc_SxQWwzRVHCuYHaxSpujlaqfTyp-3-
—I1SrdakmH80eKvrRSIkJhSNiKF jdyEm7uc6N6YTKo3iI_pw5se3vRsMiETE23WgzJ5x8s73n-
—9EMYNTUc4Pt5RdxPVDKYJYXR3qfwLwiW60Zw" }

Note that the value of last_seq is /0-.., but we received only two records. Seems like any other changes were for
documents that haven’t passed our filter.

We probably need to filter the changes feed of our mailbox by more than a single status value. We're also interested
in statuses like “spam” to update spam-filter heuristic rules, “outgoing” to let a mail daemon actually send mails,
and so on. Creating a lot of similar functions that actually do similar work isn’t good idea - so we need a dynamic
filter.

You may have noticed that filter functions take a second argument named request. This allows the creation of
dynamic filters based on query parameters, user context and more.

The dynamic version of our filter looks like this:

108 Chapter 3. Design Documents

5k7aUNSAnyJ_

pjbs9T4wYSvkD

Apache CouchDB®, Release 3.3.3

function(doc, req){
// we need only ‘mail’ documents
if (doc.type !'= 'mail'){
return false;
3
// we're interested only in requested status
if (doc.status != req.query.status){
return false;
}

return true; // passed!

and now we have passed the status query parameter in the request to let our filter match only the required documents:

GET /somedatabase/_changes?filter=mailbox/by_status&status=new HTTP/1.1

{"results": [

{"seq":"1-g1AAAAF9e]zLYWBg4MhgTmHgz8tPSTVOMDQy 1zMAQsMcoARTIkOS_P___

< 7MymBMZc4EC7MmIKSmIqWaYynEakaQAJJPsoaYwgE1JMO01TjQ3T2HgLM1LSU3LzEtNwa3fAaQ_HqQ_
-kQG3qgSQqnoCqvIYgCRDA5ACKpxPWOUCiMr9hFUegKi8T1j1A4hKkDuzAC2yZRo" ,"id":

- "df8eca9da37dade42ee4d7aa3401£f1dd", "changes":[{"rev":"1-
—c2e0085a21d34falcecbb6dc26a4ae657"}1},

{"seq":"9-
—g1AAAATreJyVKEsKwjAURUMrqCOXoCuQ5MUOOrI70XyppcaRY92JI7kR30jupaSPUUgqiiwAu85By4t0AITbhIYq
«SGFf4gEkvOyLPMsFtHRL8ZKaC1MOv3eq5ALP-X2a0G1xYKhgnONpmenjTO®40_v5t0J3LV5itTES_
—UP3FX9ppcAACaVsQA038hNd_eVFt8Zk1lV1 jPqSPYLoHO6PIJhGOCxq7-yhQcz-B4_
—fQCjFuqBjjewVF3E9cOROExSrpU_gHBTo5m","id": "df8eca9da37dade42eedd7aa34024714",
—"changes":[{"rev":"1-29d748a6e87b43db967fe338bch0®8d74"}]1},

1,

"last_seq":"10-
—g1AAAATre]yVKEsKwjAURR9tQR25BF2B5GMaHdmdaNIk 1FL jyLHuURHei09Gd1LQRaimF1sALvOQcuLcAgGKkWK
—BALkoyzLPQhGc3GKSCqWE jrvfexVy6abc_SxQWwzRVHCuYHaxSpujlaqfTyp-3-
—I1SrdakmH80eKvrRSIkJhSNiKFjdyEm7uc6N6YTKo3iI_pw5se3vRsMiETE23Wgz]5x8s73n-

< 9EMYNTUc4Pt5RdxPVDkYJYXR3qfwLwiW60Zw" }

and we can easily change filter behavior with:

GET /somedatabase/_changes?filter=mailbox/by_status&status=spam HTTP/1.1

{"results": [
{"seq":"6-g1AAAATre]yVkMOIwjAYQDIbLQTOS5gk4gaWIaPd1NNL_UUuPJ]s26im-gmuklMjVC1FFoCXyDJe_
—BSAsA4jxVM7VHpJEswWyC_ktJfRBzEzD1X5DGPDv5gJL1SXKEN560KMfdThL4W-
—FgMloQzpmByskgbvdWgnc8qfvvHCyTXWuBu_K7iz38VCOOUENq jwg79hIvivOhamQahROoVYn3-

— I5huwXSvm5BJIsTbLTk3B8Qi058-_YMoMkTOcr-BwdREImFKSNKniDcAcjmM", "id" :
-"'8960e91220798£c9£9d29d24ed612e0d", "changes":[{"rev":"3-
—cc6ff71af716ddc2ball14967025c0eed®0"}1},

1,

"last_seq":"10-
—g1AAAATreJyVKEsKwjAURRItQR25BF2B5GMaHdmdaNTk 1FL jyLHuRHei09Gd1LQRaimF1sALvOQcuLcAgGKkWK
—BALkoyzLPQhGc3GKSCqWEjrviexVy6abc_SxQWwzRVHCuYHaxSpujlaqfTyp-3-
—I1SrdakmH80eKvrRSIkJhSNiKF jdyEm7uc6N6YTKo3iI_pw5se3vRsMiETE23WgzJ5x8s73n-
—9EMYNTUc4Pt5RdxPVDKkYJYxR3qfwLwiW60Zw" }

5k7aUNSAnyJ_

pjbs9I4wYSvkD

pjbs9I4wYSvkD

Combining filters with a continuous feed allows creating powerful event-driven systems.

3.1. Design Documents 109

Apache CouchDB®, Release 3.3.3

View Filters

View filters are the same as classic filters above, with one small difference: they use the map instead of the filter
function of a view, to filter the changes feed. Each time a key-value pair is emitted from the map function, a change
is returned. This allows avoiding filter functions that mostly do the same work as views.

To use them just pass filter=_view and view=designdoc/viewname as request parameters to the changes feed:

GET /somedatabase/_changes?filter=_view&view=dname/viewname HTTP/1.1

Note: Since view filters use map functions as filters, they can’t show any dynamic behavior since request object
is not available.

See also:
CouchDB Guide:

* Guide to filter change notification

3.1.7 Validate Document Update Functions

validatefun(newDoc, oldDoc, userCtx, secObj)

Arguments
* newDoc — New version of document that will be stored.
* oldDoc - Previous version of document that is already stored.
* userCtx — User Context Object
* secObj — Security Object
Throws
forbidden error to gracefully prevent document storing.

Throws
unauthorized error to prevent storage and allow the user to re-auth.

A design document may contain a function named validate_doc_update which can be used to prevent invalid or
unauthorized document update requests from being stored. The function is passed the new document from the
update request, the current document stored in the database, a User Context Object containing information about
the user writing the document (if present), and a Security Object with lists of database security roles.

Validation functions typically examine the structure of the new document to ensure that required fields are present
and to verify that the requesting user should be allowed to make changes to the document properties. For example,
an application may require that a user must be authenticated in order to create a new document or that specific
document fields be present when a document is updated. The validation function can abort the pending document
write by throwing one of two error objects:

// user is not authorized to make the change but may re-authenticate
throw({ unauthorized: 'Error message here.' });

// change is not allowed
throw({ forbidden: 'Error message here.' });

Document validation is optional, and each design document in the database may have at most one validation func-
tion. When a write request is received for a given database, the validation function in each design document in
that database is called in an unspecified order. If any of the validation functions throw an error, the write will not
succeed.

110 Chapter 3. Design Documents

http://guide.couchdb.org/draft/notifications.html#filters

Apache CouchDB®, Release 3.3.3

Example: The _design/_auth ddoc from _users database uses a validation function to ensure that documents
contain some required fields and are only modified by a user with the _admin role:

function(newDoc, oldDoc, userCtx, secObj) {
if (newDoc._deleted === true) {
// allow deletes by admins and matching users
// without checking the other fields

if ((userCtx.roles.indexOf('_admin') !== -1) ||
(userCtx.name == oldDoc.name)) {
return;
} else {
throw({forbidden: 'Only admins may delete other user docs.'});
}
}
if ((oldDoc && oldDoc.type !== 'user') || newDoc.type !== 'user') {

throw({forbidden : 'doc.type must be user'});
} // we only allow user docs for now

if (!newDoc.name) {
throw({forbidden: 'doc.name is required'});

}

if (!'newDoc.roles) {
throw({forbidden: 'doc.roles must exist'});

}

if (!isArray(newDoc.roles)) {
throw({forbidden: 'doc.roles must be an array'});

}
if (newDoc._id !'== ('org.couchdb.user:' + newDoc.name)) {
throw({
forbidden: 'Doc ID must be of the form org.couchdb.user:name'
b
}

if (oldDoc) { // validate all updates
if (oldDoc.name !== newDoc.name) {
throw({forbidden: 'Usernames can not be changed.'});
}
}

if (newDoc.password_sha && !newDoc.salt) {
throw({
forbidden: 'Users with password_sha must have a salt.' +
'See /_utils/script/couch.js for example code.'
b
}

var is_server_or_database_admin = function(userCtx, secObj) {
// see 1if the user is a server admin
if(userCtx.roles.indexOf('_admin') !== -1) {
return true; // a server admin

}

// see if the user a database admin specified by name

(continues on next page)

3.1. Design Documents 111

Apache CouchDB®, Release 3.3.3

(continued from previous page)

if(secObj && secObj.admins &_& secObj.admins.names) {
if(secObj.admins.names.indexOf(userCtx.name) !== -1) {
return true; // database admin
}
}

// see if the user a database admin specified by role
if(secObj && secObj.admins &% secObj.admins.roles) {
var db_roles = secObj.admins.roles;
for(var idx = 0; idx < userCtx.roles.length; idx++) {
var user_role = userCtx.roles[idx];
if(db_roles.indexOf(user_role) !== -1) {
return true; // role matches!

}
}

return false; // default to no admin

}

if (!is_server_or_database_admin(userCtx, secObj)) {
if (oldDoc) { // validate non-admin updates

if (userCtx.name !== newDoc.name) {

throw ({
forbidden: 'You may only update your own user document.'

b

}

// validate role updates

var oldRoles = oldDoc.roles.sort();

var newRoles = newDoc.roles.sort();

if (oldRoles.length !== newRoles.length) {
throw({forbidden: 'Only _admin may edit roles'});
}

for (var i = 0; i < oldRoles.length; i++) {
if (oldRoles[i] !== newRoles[i]) {
throw({forbidden: 'Only _admin may edit roles'});
}
}
} else if (newDoc.roles.length > 0) {
throw({forbidden: 'Only _admin may set roles'});
}
}

// no system roles in users db
for (var i = 0; i < newDoc.roles.length; i++) {
if (newDoc.roles[i][0] === '_") {
throw({
forbidden:
'No system roles (starting with underscore) in users db.'

bH;
}

// no system names as names

(continues on next page)

112 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

(continued from previous page)

if (newDoc.name[0] === '_") {
throw({forbidden: 'Username may not start with underscore.'});

}
var badUserNameChars = [':'];

for (var i = 0; i < badUserNameChars.length; i++) {
if (newDoc.name.indexOf(badUserNameChars[i]) >= 0) {
throw({forbidden: 'Character '' + badUserNameChars[i] +
'" is not allowed in usernames.'});

Note: The return statement is used only for function, it has no impact on the validation process.

See also:
CouchDB Guide:

¢ Validation Functions

3.2 Guide to Views

Views are the primary tool used for querying and reporting on CouchDB documents. There you’ll learn how they
work and how to use them to build effective applications with CouchDB.

3.2.1 Introduction to Views

Views are useful for many purposes:
* Filtering the documents in your database to find those relevant to a particular process.
 Extracting data from your documents and presenting it in a specific order.
* Building efficient indexes to find documents by any value or structure that resides in them.
» Use these indexes to represent relationships among documents.

* Finally, with views you can make all sorts of calculations on the data in your documents. For example,
if documents represent your company’s financial transactions, a view can answer the question of what the
spending was in the last week, month, or year.

What Is a View?

Let’s go through the different use cases. First is extracting data that you might need for a special purpose in a
specific order. For a front page, we want a list of blog post titles sorted by date. We’ll work with a set of example
documents as we walk through how views work:

{
"_id":"biking",
"_rev":"AE19EBC7654",

"title":"Biking",
"body":"My biggest hobby is mountainbiking. The other day...",

(continues on next page)

3.2. Guide to Views 113

http://guide.couchdb.org/editions/1/en/validation.html

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"date":"2009/01/30 18:04:11"

}
{
"_id":"bought-a-cat",
"_rev'":"4A3BBEE711",
"title":"Bought a Cat",
"body":"I went to the the pet store earlier and brought home a little kitty...",
"date":"2009/02/17 21:13:39"
}
{
"_id":"hello-world",
"_rev'":"43FBA4E7AB",
"title":"Hello World",
"body":"Well hello and welcome to my new blog...",
"date":"2009/01/15 15:52:20"
}

Three will do for the example. Note that the documents are sorted by “_id”, which is how they are stored in the
database. Now we define a view. Bear with us without an explanation while we show you some code:

function(doc) {
if(doc.date && doc.title) {
emit(doc.date, doc.title);
3

This is a map function, and it is written in JavaScript. If you are not familiar with JavaScript but have used C or
any other C-like language such as Java, PHP, or C#, this should look familiar. It is a simple function definition.

You provide CouchDB with view functions as strings stored inside the views field of a design document. To create
this view you can use this command:

curl -X PUT http://admin:password@127.0.0.1:5984/db/_design/my_ddoc
-d "{"views":{"my_filter":{"map":
"function(doc) { if(doc.date && doc.title) { emit(doc.date, doc.title); }}"}}
‘—>}'

You don’t run the JavaScript function yourself. Instead, when you query your view, CouchDB takes the source
code and runs it for you on every document in the database your view was defined in. You guery your view to
retrieve the view result using the following command:

curl -X GET http://admin:password@127.0.0.1:5984/db/_design/my_ddoc/_view/my_filter

All map functions have a single parameter doc. This is a single document in the database. Our map function checks
whether our document has a date and a title attribute — luckily, all of our documents have them — and then
calls the built-in emit () function with these two attributes as arguments.

The emit () function always takes two arguments: the first is key, and the second is value. The emit (key,
value) function creates an entry in our view result. One more thing: the emit () function can be called multiple
times in the map function to create multiple entries in the view results from a single document, but we are not
doing that yet.

CouchDB takes whatever you pass into the emit() function and puts it into a list (see Table 1, “View results” below).
Each row in that list includes the key and value. More importantly, the list is sorted by key (by doc.date in our

114 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

case). The most important feature of a view result is that it is sorted by key. We will come back to that over and
over again to do neat things. Stay tuned.

Table 1. View results:

Key Value
“2009/01/15 15:52:20” | “Hello World”
€2009/01/30 18:04:11” | “Biking”
“2009/02/17 21:13:39” | “Bought a Cat”

When you query your view, CouchDB takes the source code and runs it for you on every document in the database.
If you have a lot of documents, that takes quite a bit of time and you might wonder if it is not horribly inefficient
to do this. Yes, it would be, but CouchDB is designed to avoid any extra costs: it only runs through all documents
once, when you first query your view. If a document is changed, the map function is only run once, to recompute
the keys and values for that single document.

The view result is stored in a B-tree, just like the structure that is responsible for holding your documents. View
B-trees are stored in their own file, so that for high-performance CouchDB usage, you can keep views on their own
disk. The B-tree provides very fast lookups of rows by key, as well as efficient streaming of rows in a key range. In
our example, a single view can answer all questions that involve time: “Give me all the blog posts from last week”
or “last month” or “this year.” Pretty neat.

When we query our view, we get back a list of all documents sorted by date. Each row also includes the post title
so we can construct links to posts. Table 1 is just a graphical representation of the view result. The actual result is
JSON-encoded and contains a little more metadata:

{
"total_rows": 3,
"offset": O,
"rows": [
{
"key": "2009/01/15 15:52:20",
"id": "hello-world",
"value": "Hello World"
1
{
"key": "2009/01/30 18:04:11",
"id": "biking",
"value": "Biking"
1
{
"key": "2009/02/17 21:13:39",
"id": "bought-a-cat",
"value": "Bought a Cat"
}
]
}

Now, the actual result is not as nicely formatted and doesn’t include any superfluous whitespace or newlines, but
this is better for you (and us!) to read and understand. Where does that “id” member in the result rows come from?
That wasn’t there before. That’s because we omitted it earlier to avoid confusion. CouchDB automatically includes
the document ID of the document that created the entry in the view result. We’ll use this as well when constructing
links to the blog post pages.

3.2. Guide to Views 115

Apache CouchDB®, Release 3.3.3

Warning: Do not emit the entire document as the value of your emit (key, value) statement unless you’re
sure you know you want it. This stores an entire additional copy of your document in the view’s secondary
index. Views with emit (key, doc) take longer to update, longer to write to disk, and consume significantly
more disk space. The only advantage is that they are faster to query than using the ?include_docs=true
parameter when querying a view.

Consider the trade-offs before emitting the entire document. Often it is sufficient to emit only a portion of the
document, or just a single key / value pair, in your views.

Efficient Lookups

Let’s move on to the second use case for views: “building efficient indexes to find documents by any value or
structure that resides in them.” We already explained the efficient indexing, but we skipped a few details. This is a
good time to finish this discussion as we are looking at map functions that are a little more complex.

First, back to the B-trees! We explained that the B-tree that backs the key-sorted view result is built only once,
when you first query a view, and all subsequent queries will just read the B-tree instead of executing the map
function for all documents again. What happens, though, when you change a document, add a new one, or delete
one? Easy: CouchDB is smart enough to find the rows in the view result that were created by a specific document.
It marks them invalid so that they no longer show up in view results. If the document was deleted, we’re good —
the resulting B-tree reflects the state of the database. If a document got updated, the new document is run through
the map function and the resulting new lines are inserted into the B-tree at the correct spots. New documents are
handled in the same way. The B-tree is a very efficient data structure for our needs, and the crash-only design of
CouchDB databases is carried over to the view indexes as well.

To add one more point to the efficiency discussion: usually multiple documents are updated between view queries.
The mechanism explained in the previous paragraph gets applied to all changes in the database since the last time
the view was queried in a batch operation, which makes things even faster and is generally a better use of your
resources.

Find One

On to more complex map functions. We said “find documents by any value or structure that resides in them.” We
already explained how to extract a value by which to sort a list of views (our date field). The same mechanism is
used for fast lookups. The URI to query to get a view’s result is /database/_design/designdocname/_view/
viewname. This gives you a list of all rows in the view. We have only three documents, so things are small, but
with thousands of documents, this can get long. You can add view parameters to the URI to constrain the result set.
Say we know the date of a blog post. To find a single document, we would use /blog/_design/docs/_view/
by_date?key="2009/01/30 18:04:11" to get the “Biking” blog post. Remember that you can place whatever
you like in the key parameter to the emit() function. Whatever you put in there, we can now use to look up exactly
— and fast.

Note that in the case where multiple rows have the same key (perhaps we design a view where the key is the name
of the post’s author), key queries can return more than one row.

Find Many

We talked about “getting all posts for last month.” If it’s February now, this is as easy as:

/blog/_design/docs/_view/by_date?startkey="2010/01/01 00:00:00"&endkey="2010/02/00._
~00:00:00"

The startkey and endkey parameters specify an inclusive range on which we can search.

To make things a little nicer and to prepare for a future example, we are going to change the format of our date field.
Instead of a string, we are going to use an array, where individual members are part of a timestamp in decreasing
significance. This sounds fancy, but it is rather easy. Instead of:

116 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

{

"date": "2009/01/31 00:00:00"
}
We Uuse:
{

"date": [2009, 1, 31, 0, O, 0]
}

Our map function does not have to change for this, but our view result looks a little different:

Table 2. New view results:

Key Value

[2009, 1, 15, 15, 52, 20] | “Hello World”
[2009, 2, 17, 21, 13, 39] | “Biking”
[2009, 1, 30, 18,4, 11] | “Bought a Cat”

And our queries change to:

/blog/_design/docs/_view/by_date?startkey=[2010, 1, 1, 0, 0, 0]&endkey=[2010, 2, 1, O,
— 0, ®]

For all you care, this is just a change in syntax, not meaning. But it shows you the power of views. Not only can
you construct an index with scalar values like strings and integers, you can also use JSON structures as keys for
your views. Say we tag our documents with a list of tags and want to see all tags, but we don’t care for documents
that have not been tagged.

{
1-:a-1§.|s: ["cool", "freak", "plankton"],
3
{
tags: (1,
}

function(doc) {
if(doc.tags.length > 0) {
for(var idx in doc.tags) {
emit(doc.tags[idx], null);
}

}

This shows a few new things. You can have conditions on structure (if(doc.tags.length > 0)) instead of just
values. This is also an example of how a map function calls emit () multiple times per document. And finally,
you can pass null instead of a value to the value parameter. The same is true for the key parameter. We’ll see in a
bit how that is useful.

3.2. Guide to Views 117

Apache CouchDB®, Release 3.3.3

Reversed Results

To retrieve view results in reverse order, use the descending=true query parameter. If you are using a startkey
parameter, you will find that CouchDB returns different rows or no rows at all. What’s up with that?

It’s pretty easy to understand when you see how view query options work under the hood. A view is stored in a
tree structure for fast lookups. Whenever you query a view, this is how CouchDB operates:

1. Starts reading at the top, or at the position that startkey specifies, if present.
2. Returns one row at a time until the end or until it hits endkey, if present.

If you specify descending=true, the reading direction is reversed, not the sort order of the rows in the view. In
addition, the same two-step procedure is followed.

Say you have a view result that looks like this:

Key | Value
0 “foo”
1 “bar”
2 “baz”

Here are potential query options: ?startkey=1&descending=true. What will CouchDB do? See #1 above: it
jumps to startkey, which is the row with the key 1, and starts reading backward until it hits the end of the view.
So the particular result would be:

Key | Value
1 é&bar’7
6‘f0075

This is very likely not what you want. To get the rows with the indexes 1 and 2 in reverse order, you need to switch
the startkey to endkey: endkey=1&descending=true:

Key | Value
2 “baz”
1 3 6bar’ 9

Now that looks a lot better. CouchDB started reading at the bottom of the view and went backward until it hit
endkey.

The View to Get Comments for Posts

We use an array key here to support the group_level reduce query parameter. CouchDB’s views are stored in
the B-tree file structure. Because of the way B-trees are structured, we can cache the intermediate reduce results in
the non-leaf nodes of the tree, so reduce queries can be computed along arbitrary key ranges in logarithmic time.
See Figure 1, “Comments map function”.

In the blog app, we use group_level reduce queries to compute the count of comments both on a per-post and
total basis, achieved by querying the same view index with different methods. With some array keys, and assuming
each key has the value 1:

the reduce view:

118 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

function(keys, values, rereduce) {
return sum(values)

}

or:

_sum

which is a built-in CouchDB reduce function (the others are _count and _stats). _sum here returns the total
number of rows between the start and end key. So with startkey=["a","b"]&endkey=["b"] (which includes
the first three of the above keys) the result would equal 3. The effect is to count rows. If you’d like to count rows
without depending on the row value, you can switch on the rereduce parameter:

function(keys, values, rereduce) {
if (rereduce) {
return sum(values);
} else {
return values.length;

}

Note: The JavaScript function above could be effectively replaced by the built-in _count.

Cortw 6 Comments by
(Frunction(doc) € ’?O$‘\' é— Jd‘J‘(’, N

o once for eac\s doc -red.
if (doc.type == "coment") {

not & joiv - reskacked ¥ one {-ﬁc .

emit([doc.post_id, doc.created_atl, doc);

K TWe
¥ Comuent
heray Weey (Gor displas)

weebul bor amwv_\eve\ reduces,
ey # of comments pes poct

S vpsan I\\A\Av\j; L

Fig. 1: Figure 1. Comments map function

This is the reduce view used by the example app to count comments, while utilizing the map to output the comments,
which are more useful than just 1 over and over. It pays to spend some time playing around with map and reduce
functions. Fauxton is OK for this, but it doesn’t give full access to all the query parameters. Writing your own
test code for views in your language of choice is a great way to explore the nuances and capabilities of CouchDB’s
incremental MapReduce system.

Anyway, with a group_level query, you're basically running a series of reduce range queries: one for each group
that shows up at the level you query. Let’s reprint the key list from earlier, grouped at level 1:

["a"] 3
["b"] 2

And at group_level=2:

["a","b"] 2
["a","c"] 1
["b","a"] 2

Using the parameter group=true makes it behave as though it were group_level=999, so in the case of our
current example, it would give the number 1 for each key, as there are no exactly duplicated keys.

3.2. Guide to Views 119

Apache CouchDB®, Release 3.3.3

Reduce/Rereduce

We briefly talked about the rereduce parameter to the reduce function. We’ll explain what’s up with it in this
section. By now, you should have learned that your view result is stored in B-tree index structure for efficiency.
The existence and use of the rereduce parameter is tightly coupled to how the B-tree index works.

Consider the map result are:

"afrikaans", 1
"afrikaans", 1
"chinese", 1
"chinese", 1
"chinese", 1
"chinese", 1
"french", 1
"italian", 1
"italian", 1
"spanish", 1
"vietnamese", 1
"vietnamese", 1

Example 1. Example view result (mmm, food)

When we want to find out how many dishes there are per origin, we can reuse the simple reduce function shown
earlier:

function(keys, values, rereduce) {
return sum(values);

Figure 2, “The B-tree index” shows a simplified version of what the B-tree index looks like. We abbreviated the
key strings.

wfr | | che s | e | e i i it nspn wir | i

Fig. 2: Figure 2. The B-tree index

The view result is what computer science grads call a “pre-order” walk through the tree. We look at each element
in each node starting from the left. Whenever we see that there is a subnode to descend into, we descend and start
reading the elements in that subnode. When we have walked through the entire tree, we’re done.

You can see that CouchDB stores both keys and values inside each leaf node. In our case, it is simply always 1, but
you might have a value where you count other results and then all rows have a different value. What’s important is
that CouchDB runs all elements that are within a node into the reduce function (setting the rereduce parameter
to false) and stores the result inside the parent node along with the edge to the subnode. In our case, each edge has
a 3 representing the reduce value for the node it points to.

Note: In reality, nodes have more than 1,600 elements in them. CouchDB computes the result for all the elements
in multiple iterations over the elements in a single node, not all at once (which would be disastrous for memory
consumption).

120 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

Now let’s see what happens when we run a query. We want to know how many “chinese” entries we have. The
query option is simple: ?key="chinese". See Figure 3, “The B-tree index reduce result”.

wfr | | e b | e | e i i it nspn wir | i

Fig. 3: Figure 3. The B-tree index reduce result

CouchDB detects that all values in the subnode include the “chinese” key. It concludes that it can take just the 3
values associated with that node to compute the final result. It then finds the node left to it and sees that it’s a node
with keys outside the requested range (key= requests a range where the beginning and the end are the same value).
It concludes that it has to use the “chinese” element’s value and the other node’s value and run them through the
reduce function with the rereduce parameter set to true.

The reduce function effectively calculates 3 + 1 at query time and returns the desired result. The next example
shows some pseudocode that shows the last invocation of the reduce function with actual values:

function(null, [3, 1], true) {
return sum([3, 11);

}

Now, we said your reduce function must actually reduce your values. If you see the B-tree, it should become
obvious what happens when you don’t reduce your values. Consider the following map result and reduce function.
This time we want to get a list of all the unique labels in our view:

"abc", "afrikaans"
"cef", "afrikaans"
"fhi", "chinese"
"hkl", "chinese"
"ino", "chinese"
"lgr", "chinese"
"mtu", "french"
"owx", "italian"
"gqza", "italian"
"tdx", "spanish"
"xfg", "vietnamese"
"zul", "vietnamese"

We don’t care for the key here and only list all the labels we have. Our reduce function removes duplicates:

function(keys, values, rereduce) {
var unique_labels = {};
values. forEach(function(label) {
if(lunique_labels[label]) {
unique_labels[label] = true;
}
9K

return unique_labels;

3.2. Guide to Views 121

Apache CouchDB®, Release 3.3.3

This translates to Figure 4, “An overflowing reduce index”.

We hope you get the picture. The way the B-tree storage works means that if you don’t actually reduce your data
in the reduce function, you end up having CouchDB copy huge amounts of data around that grow linearly, if not
faster, with the number of rows in your view.

CouchDB will be able to compute the final result, but only for views with a few rows. Anything larger will expe-
rience a ridiculously slow view build time. To help with that, CouchDB since version 0.10.0 will throw an error if
your reduce function does not reduce its input values.

["af"ch™] | ["h"] | ["f%7it"] | ["sp’, “vi"]

abc” | “cef” | “thi” || “hkI" | “ino” | “fqr" | | “mtu” | "owr” | “qza” | | “tdx" | “xfg" | “zul”

arafn‘ arafrl .u[hn' rt(hn' u(hn .l\l[hrl J!frrl nitn aritn' .uspn' Muin Arvin'

Fig. 4: Figure 4. An overflowing reduce index

One vs. Multiple Design Documents

A common question is: when should I split multiple views into multiple design documents, or keep them together?

Each view you create corresponds to one B-tree. All views in a single design document will live in the same set of
index files on disk (one file per database shard; in 2.0+ by default, 8 files per node).

The most practical consideration for separating views into separate documents is how often you change those views.
Views that change often, and are in the same design document as other views, will invalidate those other views’
indexes when the design document is written, forcing them all to rebuild from scratch. Obviously you will want to
avoid this in production!

However, when you have multiple views with the same map function in the same design document, CouchDB will
optimize and only calculate that map function once. This lets you have two views with different reduce functions
(say, one with _sum and one with _stats) but build only a single copy of the mapped index. It also saves disk
space and the time to write multiple copies to disk.

Another benefit of having multiple views in the same design document is that the index files can keep a single index
of backwards references from docids to rows. CouchDB needs these “back refs” to invalidate rows in a view when
a document is deleted (otherwise, a delete would force a total rebuild!)

One other consideration is that each separate design document will spawn another (set of) couchjs processes to
generate the view, one per shard. Depending on the number of cores on your server(s), this may be efficient (using
all of the idle cores you have) or inefficient (overloading the CPU on your servers). The exact situation will depend
on your deployment architecture.

So, should you use one or multiple design documents? The choice is yours.

122 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

Lessons Learned

* If you don’t use the key field in the map function, you are probably doing it wrong.
* If you are trying to make a list of values unique in the reduce functions, you are probably doing it wrong.

* If you don’t reduce your values to a single scalar value or a small fixed-sized object or array with a fixed
number of scalar values of small sizes, you are probably doing it wrong.

Wrapping Up

Map functions are side effect—free functions that take a document as argument and emit key/value pairs. CouchDB
stores the emitted rows by constructing a sorted B-tree index, so row lookups by key, as well as streaming operations
across a range of rows, can be accomplished in a small memory and processing footprint, while writes avoid seeks.
Generating a view takes 0(N), where N is the total number of rows in the view. However, querying a view is very
quick, as the B-tree remains shallow even when it contains many, many keys.

Reduce functions operate on the sorted rows emitted by map view functions. CouchDB’s reduce functionality
takes advantage of one of the fundamental properties of B-tree indexes: for every leaf node (a sorted row), there is
a chain of internal nodes reaching back to the root. Each leaf node in the B-tree carries a few rows (on the order of
tens, depending on row size), and each internal node may link to a few leaf nodes or other internal nodes.

The reduce function is run on every node in the tree in order to calculate the final reduce value. The end result
is a reduce function that can be incrementally updated upon changes to the map function, while recalculating the
reduction values for a minimum number of nodes. The initial reduction is calculated once per each node (inner
and leaf) in the tree.

When run on leaf nodes (which contain actual map rows), the reduce function’s third parameter, rereduce, is
false. The arguments in this case are the keys and values as output by the map function. The function has a single
returned reduction value, which is stored on the inner node that a working set of leaf nodes have in common, and
is used as a cache in future reduce calculations.

When the reduce function is run on inner nodes, the rereduce flag is true. This allows the function to account
for the fact that it will be receiving its own prior output. When rereduce is true, the values passed to the function
are intermediate reduction values as cached from previous calculations. When the tree is more than two levels
deep, the rereduce phase is repeated, consuming chunks of the previous level’s output until the final reduce value
is calculated at the root node.

A common mistake new CouchDB users make is attempting to construct complex aggregate values with a reduce
function. Full reductions should result in a scalar value, like 5, and not, for instance, a JSON hash with a set of
unique keys and the count of each. The problem with this approach is that you’ll end up with a very large final
value. The number of unique keys can be nearly as large as the number of total keys, even for a large set. It is fine
to combine a few scalar calculations into one reduce function; for instance, to find the total, average, and standard
deviation of a set of numbers in a single function.

If you’re interested in pushing the edge of CouchDB’s incremental reduce functionality, have a look at Google’s
paper on Sawzall, which gives examples of some of the more exotic reductions that can be accomplished in a system
with similar constraints.

3.2.2 Views Collation

Basics

View functions specify a key and a value to be returned for each row. CouchDB collates the view rows by this key.
In the following example, the LastName property serves as the key, thus the result will be sorted by LastName:

function(doc) {
if (doc.Type == "customer") {
emit(doc.LastName, {FirstName: doc.FirstName, Address: doc.Address});

(continues on next page)

3.2. Guide to Views 123

http://research.google.com/archive/sawzall.html
http://research.google.com/archive/sawzall.html

Apache CouchDB®, Release 3.3.3

(continued from previous page)

CouchDB allows arbitrary JSON structures to be used as keys. You can use JSON arrays as keys for fine-grained
control over sorting and grouping.

Examples

The following clever trick would return both customer and order documents. The key is composed of a customer
_id and a sorting token. Because the key for order documents begins with the _id of a customer document, all the
orders will be sorted by customer. Because the sorting token for customers is lower than the token for orders, the
customer document will come before the associated orders. The values 0 and 1 for the sorting token are arbitrary.

function(doc) {

if (doc.Type == "customer™) {
emit([doc._id, 0], null);
} else if (doc.Type == "order") {

emit([doc.customer_id, 1], null);

}

To list a specific customer with _id XYZ, and all of that customer’s orders, limit the startkey and endkey ranges
to cover only documents for that customer’s _id:

startkey=["XYZ"]&endkey=["XYZ", {}]

It is not recommended to emit the document itself in the view. Instead, to include the bodies of the documents
when requesting the view, request the view with ?7include_docs=true.

Sorting by Dates

It maybe be convenient to store date attributes in a human readable format (i.e. as a string), but still sort by date.
This can be done by converting the date to a number in the emit () function. For example, given a document with a
created_at attribute of 'Wed Jul 23 16:29:21 +0100 2013', the following emit function would sort by date:

emit(Date.parse(doc.created_at).getTime(), null);

Alternatively, if you use a date format which sorts lexicographically, such as "2013/06/09 13:52:11 +0000"
you can just

emit(doc.created_at, null);

and avoid the conversion. As a bonus, this date format is compatible with the JavaScript date parser, so you can
use new Date(doc.created_at) in your client side JavaScript to make date sorting easy in the browser.

String Ranges

If you need start and end keys that encompass every string with a given prefix, it is better to use a high value
Unicode character, than to use a 'ZZZZ" suffix.

That is, rather than:

startkey="abc"&endkey="abcZZ7277272777"

You should use:

124 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

startkey="abc"&endkey="abc\ufff®"

Collation Specification

This section is based on the view_collation function in view_collation.js:

// special values sort before all other types
null
false
true

// then numbers
1

W N
(=]

// then text, case sensitive
ngn
npn
"aa"
"y
ng"
"ha"
"bb"

// then arrays. compared element by element until different.
// Longer arrays sort after their prefixes

['a"]

["b"]
['b","c"]
["b","c", "a"]
['b","d"]
["b","d", "e"]

// then object, compares each key value in the list until different.
// larger objects sort after their subset objects.
{a:1}
{a:2}
{b:1}
{b:2}
{b:2, a:1} // Member order does matter for collation.
// CouchDB preserves member order
// but doesn't require that clients will.
// this test might fail if used with a js engine
// that doesn't preserve order
{b:2, c:2}

Comparison of strings is done using ICU which implements the Unicode Collation Algorithm, giving a dictionary
sorting of keys. This can give surprising results if you were expecting ASCII ordering. Note that:

» All symbols sort before numbers and letters (even the “high” symbols like tilde, 0x7e)
« Differing sequences of letters are compared without regard to case, soa < aabutalsoA < aaanda < AA
* Identical sequences of letters are compared with regard to case, with lowercase before uppercase, so a < A

You can demonstrate the collation sequence for 7-bit ASCII characters like this:

3.2. Guide to Views 125

https://github.com/apache/couchdb/blob/main/test/javascript/tests/view_collation.js
http://site.icu-project.org/
https://www.unicode.org/reports/tr10/

Apache CouchDB®, Release 3.3.3

require 'rubygems'
require 'restclient'
require 'json'

="http://127.0.0.1:5984/collator"

.delete rescue nil

.put y

(32..126) .each do |c|

.put " /#{c.to_s(16) }", {"x"=>c.chr}.to_json
end
.put " /_design/test", <<EOS
{
"views":{
"one": {
"map":"function (doc) { emit(doc.x,null); }"
}
}
}
EOS
puts .get (" /_design/test/_view/one")

This shows the collation sequence to be:

A _) Ton
y 3 = 2 £ .

_ (>I[]1]
aAbBcCdDeEfFgGhH
“VwWxXyYzZ

{a* /\N&#%+<=>|~$012345672829
iIjJkK1I1LmMnNoOpPgQrRsStTulUv,

Key ranges

Take special care when querying key ranges. For example: the query:

startkey="Abc"&endkey="AbczZzZZ"

will match “ABC” and “abc1”, but not “abc”. This is because UCA sorts as:

abc < Abc < ABC < abcl < AbcZZZZZ

For most applications, to avoid problems you should lowercase the startkey:

startkey="abc"&endkey="abcZZZZZ7Z77"

will match all keys starting with [aA] [bB] [cC]

126 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

Complex keys

The query startkey=["foo"]&endkey=["foo",{}] will match most array keys with “foo” in the first
element, such as ["foo","bar"] and ["foo",["bar","baz"]]. However it will not match ["foo",
{"an":"object"}]

_all_docs

The _all_docs view is a special case because it uses ASCII collation for doc ids, not UCA:

startkey="_design/"&endkey="_design/ZZZ2727777"

will not find _design/abc because ‘Z’ comes before ‘a’ in the ASCII sequence. A better solution is:

startkey="_design/"&endkey="_design0®"

Raw collation

To squeeze a little more performance out of views, you can specify "options":{"collation":"raw"} within
the view definition for native Erlang collation, especially if you don’t require UCA. This gives a different collation
sequence:

1

false
null

true
{"a":"a"},
["a"]

a

Beware that {} is no longer a suitable “high” key sentinel value. Use a string like "\ufff®" instead.

3.2.3 Joins With Views

Linked Documents

If your map function emits an object value which has {'_id': XXX} and you query view with
include_docs=true parameter, then CouchDB will fetch the document with id XXX rather than the document
which was processed to emit the key/value pair.

This means that if one document contains the ids of other documents, it can cause those documents to be fetched
in the view too, adjacent to the same key if required.

For example, if you have the following hierarchically-linked documents:

L

{ "_id": "11111" %,

{ "_id": "22222", "ancestors": ["11111"], "value": "hello" },

{ "_id": "33333", "ancestors'": ["22222","11111"], "value": "world" }
]

You can emit the values with the ancestor documents adjacent to them in the view like this:

function(doc) {
if (doc.value) {
emit([doc.value, 0], null);

(continues on next page)

3.2. Guide to Views 127

Apache CouchDB®, Release 3.3.3

(continued from previous page)

if (doc.ancestors) {

}

for (var i in doc.ancestors) {

emit([doc.value, Number(i)+1], {_id: doc.ancestors[il});

}

The result you get is:

{
"total_rows": 5,
"offset": O,
"rows": [
{
"id": "22222",
"key": [
"hello",
0
1,
"value": null,
"doc": {
"_id": "22222",
"_rev": "1-Oeee8lfech5aa4f51e285c621271££02",
"ancestors": [
"11111"
1,
"value": "hello"
}
1
{
"id": "22222",
"key": [
"hello",
1
1,
"value": {
"_id": "11111"
1,
"doc": {
"_id": "11111",
"_rev": "1-967a00dff5e02add41819138abb3284d"
}
1,
{
"id": "33333",
"key": [
"world",
0
1,
"value": null,
"doc": {
"_id": "33333",
"_rev": "1-11e42b44fdb3d3784602eca7c0332a43",
"ancestors": [
"22222",
(continues on next page)
128 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"11111"
1,
"value": "world"
}
1
{
"id": "33333",
"key": [
"world",
1
1,
"value": {
"_id": "22222"
1,
"doc": {
"_id": "22222",
"_rev": "1-Oecee8lfech5aadf51e285c621271££f02",
"ancestors": [
"11111"
1,
"value": "hello"
}
1,
{
"id": "33333",
"key": [
"world",
2
1,
"value": {
"_id": "11111"
1
"doc": {
"_id": "11111",
"_rev': "1-967a00dff5e02add41819138abb3284d"
}
}

which makes it very cheap to fetch a document plus all its ancestors in one query.

Note that the "id" in the row is still that of the originating document. The only difference is that include_docs
fetches a different doc.

The current revision of the document is resolved at query time, not at the time the view is generated. This means
that if a new revision of the linked document is added later, it will appear in view queries even though the view
itself hasn’t changed. To force a specific revision of a linked document to be used, emit a ""_rev" property as well
as "_id".

3.2. Guide to Views 129

Apache CouchDB®, Release 3.3.3

Using View Collation
Author
Christopher Lenz

Date
2007-10-05

Source
http://www.cmlenz.net/archives/2007/10/couchdb-joins

Just today, there was a discussion on IRC on how you’d go about modeling a simple blogging system with “post”
and “comment” entities, where any blog post might have N comments. If you’d be using an SQL database, you’d
obviously have two tables with foreign keys and you’d be using joins. (At least until you needed to add some
denormalization).

But what would the “obvious” approach in CouchDB look like?

Approach #1: Comments Inlined

A simple approach would be to have one document per blog post, and store the comments inside that document:

{

"_id": "myslug",

"_rev'": "123456",

"author": "john",

"title": "My blog post",

"content": "Bla bla bla ...",

"comments": [
{"author": "jack", "content": "..."},
{"author": "jane", "content": "..."}

Note: Of course the model of an actual blogging system would be more extensive, you’d have tags, timestamps,
etc, etc. This is just to demonstrate the basics.

The obvious advantage of this approach is that the data that belongs together is stored in one place. Delete the post,
and you automatically delete the corresponding comments, and so on.

You may be thinking that putting the comments inside the blog post document would not allow us to query for
the comments themselves, but you’d be wrong. You could trivially write a CouchDB view that would return all
comments across all blog posts, keyed by author:

function(doc) {
for (var i in doc.comments) {
emit(doc.comments[i].author, doc.comments[i].content);
}
}

Now you could list all comments by a particular user by invoking the view and passing it a ?key="username"
query string parameter.

However, this approach has a drawback that can be quite significant for many applications: To add a comment to a
post, you need to:

* Fetch the blog post document

¢ Add the new comment to the JSON structure

130 Chapter 3. Design Documents

http://www.cmlenz.net/archives/2007/10/couchdb-joins
http://en.wikipedia.org/wiki/Denormalization

Apache CouchDB®, Release 3.3.3

* Send the updated document to the server

Now if you have multiple client processes adding comments at roughly the same time, some of them will get a
HTTP 409 Conflict error on step 3 (that’s optimistic concurrency in action). For some applications this makes
sense, but in many other apps, you’d want to append new related data regardless of whether other data has been
added in the meantime.

The only way to allow non-conflicting addition of related data is by putting that related data into separate documents.

Approach #2: Comments Separate

Using this approach you’d have one document per blog post, and one document per comment. The comment
documents would have a “backlink” to the post they belong to.

The blog post document would look similar to the above, minus the comments property. Also, we’d now have a
type property on all our documents so that we can tell the difference between posts and comments:

{
"_id": "myslug",
"_rev": "123456",
"type": "post",
"author": "john",
"title": "My blog post",
"content": "Bla bla bla ..."

The comments themselves are stored in separate documents, which also have a type property (this time with the
value “comment”), and additionally feature a post property containing the ID of the post document they belong to:

{

"_id": "ABCDEF",
"_rev'": "123456",
"type": "comment",
"post": "myslug",
"author": "jack",
"content": "..."

}

{
"_id": "DEFABC",
"_rev'": "123456",
"type": "comment",
"post": "myslug",
"author": "jane",
"content": "..."

3

To list all comments per blog post, you’d add a simple view, keyed by blog post ID:

function(doc) {
if (doc.type == "comment") {
emit(doc.post, {author: doc.author, content: doc.content});

}

And you’d invoke that view passing it a 7key="post_id" query string parameter.

Viewing all comments by author is just as easy as before:

3.2. Guide to Views 131

Apache CouchDB®, Release 3.3.3

function(doc) {
if (doc.type == "comment") {
emit(doc.author, {post: doc.post, content: doc.content});

}

So this is better in some ways, but it also has a disadvantage. Imagine you want to display a blog post with all
the associated comments on the same web page. With our first approach, we needed just a single request to the
CouchDB server, namely a GET request to the document. With this second approach, we need two requests: a GET
request to the post document, and a GET request to the view that returns all comments for the post.

That is okay, but not quite satisfactory. Just imagine you wanted to add threaded comments: you’d now need an
additional fetch per comment. What we’d probably want then would be a way to join the blog post and the various
comments together to be able to retrieve them with a single HTTP request.

This was when Damien Katz, the author of CouchDB, chimed in to the discussion on IRC to show us the way.

Optimization: Using the Power of View Collation

Obvious to Damien, but not at all obvious to the rest of us: it’s fairly simple to make a view that includes both the
content of the blog post document, and the content of all the comments associated with that post. The way you do
that is by using complex keys. Until now we’ve been using simple string values for the view keys, but in fact they
can be arbitrary JSON values, so let’s make some use of that:

function(doc) {

if (doc.type == "post") {
emit([doc._id, 0], null);
} else if (doc.type == "comment") {

emit([doc.post, 1], null);
}

Okay, this may be confusing at first. Let’s take a step back and look at what views in CouchDB are really about.

CouchDB views are basically highly efficient on-disk dictionaries that map keys to values, where the key is auto-
matically indexed and can be used to filter and/or sort the results you get back from your views. When you “invoke”
a view, you can say that you’re only interested in a subset of the view rows by specifying a ?key=foo query string
parameter. Or you can specify ?startkey=foo and/or ?endkey=bar query string parameters to fetch rows over a
range of keys. Finally, by adding ?include_docs=true to the query, the result will include the full body of each
emitted document.

It’s also important to note that keys are always used for collating (i.e. sorting) the rows. CouchDB has well defined
(but as of yet undocumented) rules for comparing arbitrary JSON objects for collation. For example, the JSON
value ["foo", 2] is sorted after (considered “greater than”) the values ["foo"] or ["foo", 1, "bar"], but
before e.g. ["foo", 2, "bar"]. This feature enables a whole class of tricks that are rather non-obvious. ..

See also:
Views Collation

With that in mind, let’s return to the view function above. First note that, unlike the previous view functions we’ve
used here, this view handles both “post” and “comment” documents, and both of them end up as rows in the same
view. Also, the key in this view is not just a simple string, but an array. The first element in that array is always
the ID of the post, regardless of whether we’re processing an actual post document, or a comment associated with
a post. The second element is O for post documents, and 1 for comment documents.

Let’s assume we have two blog posts in our database. Without limiting the view results via key, startkey, or
endkey, we’d get back something like the following:

132 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

{
"total_rows": 5, "offset": 0, "rows": [{
"id": "myslug",
"key": ["myslug", 0],
"value": null
oA
"id": "ABCDEF",
"key": ["myslug", 1],
"value": null
oA
"id": "DEFABC",
"key": ["myslug", 1],
"value": null
oA
"id": "other_slug",
"key": ["other_slug", 0],
"value": null
o
"id": "CDEFAB",
"key": ["other_slug", 1],
"value": null
1
]
3
Note: The . .. placeholders here would contain the complete JSON encoding of the corresponding documents

Now, to get a specific blog post and all associated comments, we’d invoke that view with the query string:

?startkey=["myslug"]&endkey=["myslug", 2]&include_docs=true

We’d get back the first three rows, those that belong to the myslug post, but not the others, along with the full
bodies of each document. Et voila, we now have the data we need to display a post with all associated comments,
retrieved via a single GET request.

You may be asking what the 0 and 1 parts of the keys are for. They’re simply to ensure that the post document
is always sorted before the the associated comment documents. So when you get back the results from this view
for a specific post, you’ll know that the first row contains the data for the blog post itself, and the remaining rows
contain the comment data.

One remaining problem with this model is that comments are not ordered, but that’s simply because we
don’t have date/time information associated with them. If we had, we’d add the timestamp as third ele-
ment of the key array, probably as ISO date/time strings. Now we would continue using the query string ?
startkey=["myslug"]&endkey=["myslug", 2]&include_docs=true to fetch the blog post and all asso-
ciated comments, only now they’d be in chronological order.

3.2. Guide to Views 133

Apache CouchDB®, Release 3.3.3

3.2.4 View Cookbook for SQL Jockeys

This is a collection of some common SQL queries and how to get the same result in CouchDB. The key to remember
here is that CouchDB does not work like an SQL database at all, and that best practices from the SQL world do not
translate well or at all to CouchDB. This document’s “cookbook” assumes that you are familiar with the CouchDB
basics such as creating and updating databases and documents.

Using Views

How you would do this in SQL:

CREATE TABLE

or:

ALTER TABLE

How you can do this in CouchDB?

Using views is a two-step process. First you define a view; then you query it. This is analogous to defining a table
structure (with indexes) using CREATE TABLE or ALTER TABLE and querying it using an SQL query.

Defining a View

Defining a view is done by creating a special document in a CouchDB database. The only real specialness is the
_id of the document, which starts with _design/ — for example, _design/application. Other than that, it is just a
regular CouchDB document. To make sure CouchDB understands that you are defining a view, you need to prepare
the contents of that design document in a special format. Here is an example:

{
"_id": "_design/application",
"_rev'": "1-C1687D17",
"views": {
"viewname": {
"map": "function(doc) { ... }",
"reduce": "function(keys, values) { ... }"
}
}
}

We are defining a view viewname. The definition of the view consists of two functions: the map function and the
reduce function. Specifying a reduce function is optional. We’ll look at the nature of the functions later. Note that
viewname can be whatever you like: users, by-name, or by-date are just some examples.

A single design document can also include multiple view definitions, each identified by a unique name:

{
"_id": "_design/application",
"_rev": "1-C1687D17",
"views": {
"viewname": {
"map": "function(doc) { ... }",
"reduce": "function(keys, values) { ... }"
1
"anotherview": {
"map": "function(doc) { ... }",
"reduce": "function(keys, values) { ... }"

(continues on next page)

134 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

(continued from previous page)

Querying a View

The name of the design document and the name of the view are significant for querying the view. To query the
view viewname, you perform an HTTP GET request to the following URI:

/database/_design/application/_view/viewname

database is the name of the database you created your design document in. Next up is the design document name,
and then the view name prefixed with _view/. To query anotherview, replace viewname in that URI with anoth-
erview. If you want to query a view in a different design document, adjust the design document name.

MapReduce Functions

MapReduce is a concept that solves problems by applying a two-step process, aptly named the map phase and the
reduce phase. The map phase looks at all documents in CouchDB separately one after the other and creates a map
result. The map result is an ordered list of key/value pairs. Both key and value can be specified by the user writing
the map function. A map function may call the built-in emit (key, value) function O to N times per document,
creating a row in the map result per invocation.

CouchDB is smart enough to run a map function only once for every document, even on subsequent queries on a
view. Only changes to documents or new documents need to be processed anew.

Map functions

Map functions run in isolation for every document. They can’t modify the document, and they can’t talk to the
outside world—they can’t have side effects. This is required so that CouchDB can guarantee correct results without
having to recalculate a complete result when only one document gets changed.

The map result looks like this:

{"total_rows":3,"offset":0, " "rows": [
{"id":"£c2636b£f50556346f1ce46b4dbcO1fe30", "key":"Lena", "value":5},
{"id":"1fb2449f9b9d4e466dbfa47ebe675063", " "key":"Lisa", "value":4},
{"id":"8ede®9f6f6aeb35d948485624b28£149","key" :"Sarah", "value":6}
13

It is a list of rows sorted by the value of key. The id is added automatically and refers back to the document that
created this row. The value is the data you’re looking for. For example purposes, it’s the girl’s age.

The map function that produces this result is:

function(doc) {
if(doc.name && doc.age) {
emit(doc.name, doc.age);

}

It includes the if statement as a sanity check to ensure that we’re operating on the right fields and calls the emit
function with the name and age as the key and value.

3.2. Guide to Views 135

Apache CouchDB®, Release 3.3.3

Look Up by Key

How you would do this in SQL:

SELECT field FROM table WHERE value="searchterm"

How you can do this in CouchDB?
Use case: get a result (which can be a record or set of records) associated with a key (“searchterm”).

To look something up quickly, regardless of the storage mechanism, an index is needed. An index is a data structure
optimized for quick search and retrieval. CouchDB’s map result is stored in such an index, which happens to be a
B+ tree.

To look up a value by “searchterm”, we need to put all values into the key of a view. All we need is a simple map
function:

function(doc) {
if(doc.value) {
emit(doc.value, null);
}
}

This creates a list of documents that have a value field sorted by the data in the value field. To find all the records
that match “searchterm”, we query the view and specify the search term as a query parameter:

/database/_design/application/_view/viewname?key="searchterm"

Consider the documents from the previous section, and say we’re indexing on the age field of the documents to
find all the five-year-olds:

function(doc) {
if(doc.age && doc.name) {
emit(doc.age, doc.name);
}
}

Query:

/ladies/_design/ladies/_view/age?key=5

Result:

{"total_rows":3,"offset":1,"rows": [
{"id":"£c2636bf50556346f1ce46bdbcO1fe30", "key":5,"value":"Lena"}
11

Easy.

Note that you have to emit a value. The view result includes the associated document ID in every row. We can use
it to look up more data from the document itself. We can also use the 7include_docs=true parameter to have
CouchDB fetch the individual documents for us.

136 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

Look Up by Prefix

How you would do this in SQL:

SELECT field FROM table WHERE value LIKE "searchterm%"

How you can do this in CouchDB?

Use case: find all documents that have a field value that starts with searchterm. For example, say you stored
a MIME type (like fext/html or image/jpg) for each document and now you want to find all documents that are
images according to the MIME type.

The solution is very similar to the previous example: all we need is a map function that is a little more clever than
the first one. But first, an example document:

{
"_id": "Hugh Laurie",
"_rev": "1-9fded7deef52ac373119d05435581edf",
"mime-type": "image/jpg",
"description": "some dude"
}

The clue lies in extracting the prefix that we want to search for from our document and putting it into our view
index. We use a regular expression to match our prefix:

function(doc) {
if(doc["mime-type"]) {
// from the start (#) match everything that is not a slash ([*\/]+) until
// we find a slash (\/). Slashes needs to be escaped with a backslash (\/)
var prefix = doc["mime-type"].match(/A[A\/1+\//);
if(prefix) {
emit(prefix, null);
}

¥

We can now query this view with our desired MIME type prefix and not only find all images, but also text, video,
and all other formats:

/files/_design/finder/_view/by-mime-type?key="image/"

Aggregate Functions

How you would do this in SQL:

SELECT COUNT(field) FROM table

How you can do this in CouchDB?
Use case: calculate a derived value from your data.

We haven’t explained reduce functions yet. Reduce functions are similar to aggregate functions in SQL. They
compute a value over multiple documents.

To explain the mechanics of reduce functions, we’ll create one that doesn’t make a whole lot of sense. But this
example is easy to understand. We’ll explore more useful reductions later.

Reduce functions operate on the output of the map function (also called the map result or intermediate result). The
reduce function’s job, unsurprisingly, is to reduce the list that the map function produces.

Here’s what our summing reduce function looks like:

3.2. Guide to Views 137

Apache CouchDB®, Release 3.3.3

function(keys, values) {
var sum = 0;
for(var idx in values) {
sum = sum + values[idx];
}

return sum;

Here’s an alternate, more idiomatic JavaScript version:

function(keys, values) {
var sum = 0;
values. forEach(function(element) {
sum = sum + element;
19K

return sum;

Note: Don’t miss effective built-in reduce functions like _sum and _count

This reduce function takes two arguments: a list of keys and a list of values. For our summing purposes we can
ignore the keys-list and consider only the value list. We’re looping over the list and add each item to a running total
that we're returning at the end of the function.

You’ll see one difference between the map and the reduce function. The map function uses emit () to create its
result, whereas the reduce function returns a value.

For example, from a list of integer values that specify the age, calculate the sum of all years of life for the news
headline, “786 life years present at event.” A little contrived, but very simple and thus good for demonstration
purposes. Consider the documents and the map view we used earlier in this document.

The reduce function to calculate the total age of all girls is:

function(keys, values) {
return sum(values);

Note that, instead of the two earlier versions, we use CouchDB’s predefined sum() function. It does the same thing
as the other two, but it is such a common piece of code that CouchDB has it included.

The result for our reduce view now looks like this:

{"rows": [
{"key":null, "value":15}
13

The total sum of all age fields in all our documents is 15. Just what we wanted. The key member of the result
object is null, as we can’t know anymore which documents took part in the creation of the reduced result. We’ll
cover more advanced reduce cases later on.

As a rule of thumb, the reduce function should reduce to a single scalar value. That is, an integer; a string; or a
small, fixed-size list or object that includes an aggregated value (or values) from the values argument. It should
never just return values or similar. CouchDB will give you a warning if you try to use reduce “the wrong way’:

{

"error":"reduce_overflow_error",

"message" :"Reduce output must shrink more rapidly: Current output:

138 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

Get Unique Values

How you would do this in SQL:

SELECT DISTINCT field FROM table

How you can do this in CouchDB?

Getting unique values is not as easy as adding a keyword. But a reduce view and a special query parameter give
us the same result. Let’s say you want a list of tags that your users have tagged themselves with and no duplicates.

First, let’s look at the source documents. We punt on _id and _rev attributes here:

{

"name" :"Chris",

"tags":["mustache", "music", "couchdb"]
}
{

"name": "Noah",

"tags":["hypertext", "philosophy", "couchdb"]
}
{

"name":"Jan",

"tags":["drums", "bike", "couchdb"]
}

Next, we need a list of all tags. A map function will do the trick:

function(doc) {
if(doc.name && doc.tags) {
doc.tags.forEach(function(tag) {
emit(tag, null);
DN

}

The result will look like this:

{"total_rows":9,"offset":0, " "rows": [
{"id":"3525ab874bc4965fa3cda7c549e92d30", "key": "bike", "value" :null},
{"id":"3525ab874bc4965fa3cda7c549e92d30", "key": "couchdb", "value":null},

"id":"53f82b1f0ff49a08ac79a9dff41d7860", "key": "couchdb","value":null},
{"id":"da5ea89448a4506925823f4d985aabbd", "key": "couchdb","value" :null},
{"id":"3525ab874bc4965fa3cda7c549e92d30", "key" : "drums", "value" :null},
{"id":"53£f82b1f0ff49a08ac79a9dff41d7860","key": "hypertext","value" :null},
{"id":"da5ea89448a4506925823f4d985aabbd", "key": "music","value":null},
"id":"da5ea89448a4506925823f4d985aabbd", "key": "mustache","value" :null},
{"id":"53£f82b1f0ff49a08ac79a9dff41d7860", "key" : "philosophy","value" :null}
13

As promised, these are all the tags, including duplicates. Since each document gets run through the map function
in isolation, it cannot know if the same key has been emitted already. At this stage, we need to live with that. To
achieve uniqueness, we need a reduce:

function(keys, values) {
return true;

}

3.2. Guide to Views 139

Apache CouchDB®, Release 3.3.3

This reduce doesn’t do anything, but it allows us to specify a special query parameter when querying the view:

/dudes/_design/dude-data/_view/tags?group=true

CouchDB replies:

{"rows": [
{"key":"bike","value":true},
{"key":"couchdb", "value":true},
{"key":"drums", "value":true},
{"key" :"hypertext","value":true},
{"key":"music","value":true},
{"key":"mustache","value":true},
{"key":"philosophy","value":true}
13

In this case, we can ignore the value part because it is always true, but the result includes a list of all our tags and
no duplicates!

With a small change we can put the reduce to good use, too. Let’s see how many of the non-unique tags are there
for each tag. To calculate the tag frequency, we just use the summing up we already learned about. In the map
function, we emit a 1 instead of null:

function(doc) {
if(doc.name && doc.tags) {
doc.tags.forEach(function(tag) {
emit(tag, 1);
b

In the reduce function, we return the sum of all values:

function(keys, values) {
return sum(values);

}

Now, if we query the view with the ?group=true parameter, we get back the count for each tag:

{"rows": [
{"key":"bike","value":1},
{"key":"couchdb","value":3},
{"key":"drums", "value":1},
{"key":"hypertext","value":1},
{"key":"music","value":1},
{"key":"mustache","value":1},
{"key":"philosophy","value":1}

1}

140 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

Enforcing Uniqueness

How you would do this in SQL:

UNIQUE KEY(column)

How you can do this in CouchDB?
Use case: your applications require that a certain value exists only once in a database.

This is an easy one: within a CouchDB database, each document must have a unique _id field. If you require
unique values in a database, just assign them to a document’s _id field and CouchDB will enforce uniqueness for
you.

There’s one caveat, though: in the distributed case, when you are running more than one CouchDB node that
accepts write requests, uniqueness can be guaranteed only per node or outside of CouchDB. CouchDB will allow
two identical IDs to be written to two different nodes. On replication, CouchDB will detect a conflict and flag the
document accordingly.

3.2.5 Pagination Recipe

This recipe explains how to paginate over view results. Pagination is a user interface (UI) pattern that allows the
display of a large number of rows (the result set) without loading all the rows into the UI at once. A fixed-size
subset, the page, is displayed along with next and previous links or buttons that can move the viewport over the
result set to an adjacent page.

We assume you’re familiar with creating and querying documents and views as well as the multiple view query
options.

Example Data

To have some data to work with, we’ll create a list of bands, one document per band:

{ "name":"Biffy Clyro" }

{ "name":"Foo Fighters" }

{ "name":"Tool" }

{ "name":"Nirvana" }

{ "name":"Helmet" }

{ "name":"Tenacious D" }

{ "name":"Future of the Left" }

{ "name":"A Perfect Circle" }

{ "name":"Silverchair" }

{ "name":"Queens of the Stone Age" }

{ "name":"Kerub" }

3.2. Guide to Views 141

Apache CouchDB®, Release 3.3.3

A View

We need a simple map function that gives us an alphabetical list of band names. This should be easy, but we’re
adding extra smarts to filter out “The” and “A” in front of band names to put them into the right position:

function(doc) {
if(doc.name) {
var name = doc.name.replace(/*(A|The) /, "");
emit(name, null);

The views result is an alphabetical list of band names. Now say we want to display band names five at a time and
have a link pointing to the next five names that make up one page, and a link for the previous five, if we’re not on
the first page.

We learned how to use the startkey, 1imit, and skip parameters in earlier documents. We’ll use these again
here. First, let’s have a look at the full result set:

{"total_rows":11,"offset":0,"rows": [
{"id":"a0746072bba60a62b01209f467cadfe2","key":"Biffy Clyro","value":null},
{"id":"b47d82284969f10cd1b6ead60ad62d00", "key" :"Foo Fighters","value":null},
{"id":"45ccde324611£f86ad4932555dea7fce®","key" :"Tenacious D","value":null},
{"id":"d7ab24bb3489a9010c7d1a2087a4a9%e4","key" :"Future of the Left","value":null},
{"id":"ad2f85ef87f5a9%9a65db5b3a75a03cd82","key": "Helmet","value" :null},
{"id":"a2f31cfa68118a6ae9d35444fcbla3cf", "key":"Nirvana","value":null},
{"id":"67373171d0£f626b811bdc34e92e77901","key" : "Kerub", "value":null},
{"id":"3e1b84630c384f6aefla5c50a81e4a34","key":"Perfect Circle","value":null},
{"id":"84a371a7b8414237fadlb6aaf68cdlba", "key":"Queens of the Stone Age",'"value

~":null},
{"id":"dcdaf0®8242a4be7dala36e25f4f0b022", " "key":"Silverchair","value" :null},
{"id":"£d590d4ad53771db47b0406054£02243", "key" :"Tool", "value" :null}

13

Setup

The mechanics of paging are very simple:
* Display first page
¢ If there are more rows to show, show next link
* Draw subsequent page
* If this is not the first page, show a previous link
¢ If there are more rows to show, show next link

Or in a pseudo-JavaScript snippet:

var result = new Result();
var page = result.getPage();

page.displayQ);

if(result.hasPrev()) {
page.display_link('prev');

3

if(result.hasNext()) {

(continues on next page)

142 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

(continued from previous page)

page.display_link('next');

Paging

To get the first five rows from the view result, you use the ?1imit=5 query parameter:

curl -X GET http://127.0.0.1:5984/artists/_design/artists/_view/by-name?limit=5

The result:

{"total_rows":11,"offset":0,"rows": [
{"id":"a0746072bba60a62b01209f467cadfe2","key":"Biffy Clyro","value":null},
{"id":"b47d82284969f10cd1b6ea460ad62d00", "key":"Foo Fighters","value":null},

"id":"45ccde324611£f86ad4932555dea7fce®", "key": "Tenacious D","value":null},
{"id":"d7ab24bb3489a9010c7d1a2087a4a9%e4","key" :"Future of the Left","value":null},
"id":"ad2f85ef87f5a9a65db5b3a75a03cd82", "key" : "Helmet", "value" :null}
13

By comparing the total_rows value to our 1imit value, we can determine if there are more pages to display.
We also know by the offset member that we are on the first page. We can calculate the value for skip= to get the
results for the next page:

var rows_per_page = 5;
var page = (offset / rows_per_page) + 1; // == 1
var skip = page * rows_per_page; // == 5 for the first page, 10 for the second ...

So we query CouchDB with:

curl -X GET 'http://127.0.0.1:5984/artists/_design/artists/_view/by-name?limit=5&
f—»Skip:S'

Note we have to use ' (single quotes) to escape the & character that is special to the shell we execute curl in.

The result:

{"total_rows":11,"offset":5,"rows": [
{"id":"a2f31cfa68118a6ae9d35444fcbla3cf","key":"Nirvana","value":null},
{"id":"67373171d0£f626b811bdc34e92e77901","key" : "Kerub", "value":null},
{"id":"3e1b84630c384f6aefla5c50a8le4a34", "key":"Perfect Circle","value":null},
{"id":"84a371a7b8414237fad1b6aaf68cdlba", "key":"Queens of the Stone Age",
"value":null},
{"id":"dcdaf0®8242a4be7dala36e25f4f0b022", " "key":"Silverchair","value" :null}

13

Implementing the hasPrev() and hasNext () method is pretty straightforward:

function hasPrev()

{

return page > 1;

}

function hasNext()

{

var last_page = Math.floor(total_rows / rows_per_page) +
(total_rows % rows_per_page);

(continues on next page)

3.2. Guide to Views 143

Apache CouchDB®, Release 3.3.3

(continued from previous page)

return page != last_page;

Paging (Alternate Method)

The method described above performed poorly with large skip values until CouchDB 1.2. Additionally, some use
cases may call for the following alternate method even with newer versions of CouchDB. One such case is when
duplicate results should be prevented. Using skip alone it is possible for new documents to be inserted during
pagination which could change the offset of the start of the subsequent page.

A correct solution is not much harder. Instead of slicing the result set into equally sized pages, we look at 10 rows
at a time and use startkey to jump to the next 10 rows. We even use skip, but only with the value 1.

Here is how it works:
* Request rows_per_page + I rows from the view
» Display rows_per_page rows, store + 1 row as next_startkey and next_startkey_docid
* As page information, keep startkey and next_startkey
e Use the next_* values to create the next link, and use the others to create the previous link

The trick to finding the next page is pretty simple. Instead of requesting 10 rows for a page, you request 11 rows,
but display only 10 and use the values in the 11th row as the startkey for the next page. Populating the link
to the previous page is as simple as carrying the current startkey over to the next page. If there’s no previous
startkey, we are on the first page. We stop displaying the link to the next page if we get rows_per_page or less
rows back. This is called linked list pagination, as we go from page to page, or list item to list item, instead of
jumping directly to a pre-computed page. There is one caveat, though. Can you spot it?

CouchDB view keys do not have to be unique; you can have multiple index entries read. What if you have more
index entries for a key than rows that should be on a page? startkey jumps to the first row, and you'd be screwed
if CouchDB didn’t have an additional parameter for you to use. All view keys with the same value are internally
sorted by docid, that is, the ID of the document that created that view row. You can use the startkey_docid
and endkey_docid parameters to get subsets of these rows. For pagination, we still don’t need endkey_docid,
but startkey_docid is very handy. In addition to startkey and limit, you also use startkey_docid for
pagination if, and only if, the extra row you fetch to find the next page has the same key as the current startkey.

It is important to note that the *_docid parameters only work in addition to the *key parameters and are only
useful to further narrow down the result set of a view for a single key. They do not work on their own (the one
exception being the built-in _all_docs view that already sorts by document ID).

The advantage of this approach is that all the key operations can be performed on the super-fast B-tree index behind
the view. Looking up a page doesn’t include scanning through hundreds and thousands of rows unnecessarily.

Jump to Page

One drawback of the linked list style pagination is that you can’t pre-compute the rows for a particular page from
the page number and the rows per page. Jumping to a specific page doesn’t really work. Our gut reaction, if that
concern is raised, is, “Not even Google is doing that!” and we tend to get away with it. Google always pretends on
the first page to find 10 more pages of results. Only if you click on the second page (something very few people
actually do) might Google display a reduced set of pages. If you page through the results, you get links for the
previous and next 10 pages, but no more. Pre-computing the necessary startkey and startkey_docid for 20
pages is a feasible operation and a pragmatic optimization to know the rows for every page in a result set that is
potentially tens of thousands of rows long, or more.

If you really do need to jump to a page over the full range of documents (we have seen applications that require that),
you can still maintain an integer value index as the view index and take a hybrid approach at solving pagination.

144 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

3.3 Search

Search indexes enable you to query a database by using the Lucene Query Parser Syntax. A search index uses one,
or multiple, fields from your documents. You can use a search index to run queries, find documents based on the
content they contain, or work with groups, facets, or geographical searches.

Warning: Search cannot function unless it has a functioning, cluster-connected Clouseau instance. See Search
Plugin Installation for details.

To create a search index, you add a JavaScript function to a design document in the database. An index builds
after processing one search request or after the server detects a document update. The index function takes the
following parameters:

1. Field name - The name of the field you want to use when you query the index. If you set this parameter to
default, then this field is queried if no field is specified in the query syntax.

2. Data that you want to index, for example, doc.address. country.

3. (Optional) The third parameter includes the following fields: boost, facet, index, and store. These
fields are described in more detail later.

By default, a search index response returns 25 rows. The number of rows that is returned can be changed by using
the 1imit parameter. Each response includes a bookmark field. You can include the value of the bookmark field
in later queries to look through the responses.

Example design document that defines a search index:

{
"_id": "_design/search_example",
"indexes": {
"animals": {
"index": "function(doc){ ... }"
}
}
3

A search index will inherit the partitioning type from the options.partitioned field of the design document
that contains it.

3.3.1 Index functions

Attempting to index by using a data field that does not exist fails. To avoid this problem, use the appropriate guard
clause.

Note: Your indexing functions operate in a memory-constrained environment where the document itself forms a
part of the memory that is used in that environment. Your code’s stack and document must fit inside this memory.
In other words, a document must be loaded in order to be indexed. Documents are limited to a maximum size of
64 MB.

Note: Within a search index, do not index the same field name with more than one data type. If the same field
name is indexed with different data types in the same search index function, you might get an error when querying
the search index that says the field “was indexed without position data.” For example, do not include both of these
lines in the same search index function, as they index the myfield field as two different data types: a string "this
is a string" and a number 123.

3.3. Search 145

http://lucene.apache.org/core/4_3_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#Overview

Apache CouchDB®, Release 3.3.3

index("myfield", "this is a string");
index("myfield", 123);

The function that is contained in the index field is a JavaScript function that is called for each document in the
database. The function takes the document as a parameter, extracts some data from it, and then calls the function
that is defined in the index field to index that data.

The index function takes three parameters, where the third parameter is optional.

1. The first parameter is the name of the field you intend to use when querying the index, and which is specified
in the Lucene syntax portion of subsequent queries. An example appears in the following query:

query=color:red

The Lucene field name color is the first parameter of the index function.

The query parameter can be abbreviated to g, so another way of writing the query is as follows:

g=color:red

If the special value "default" is used when you define the name, you do not have to specify a field name
at query time. The effect is that the query can be simplified:

query=red

2. The second parameter is the data to be indexed. Keep the following information in mind when you index
your data:

» This data must be only a string, number, or boolean. Other types will cause an error to be thrown by
the index function call.

 If an error is thrown when running your function, for this reason or others, the document will not be
added to that search index.

3. The third, optional, parameter is a JavaScript object with the following fields:
Index function (optional parameter)

* boost - A number that specifies the relevance in search results. Content that is indexed with a boost
value greater than 1 is more relevant than content that is indexed without a boost value. Content with a
boost value less than one is not so relevant. Value is a positive floating point number. Default is 1 (no
boosting).

« facet - Creates a faceted index. See Fuceting. Values are true or false. Default is false.

¢ index - Whether the data is indexed, and if so, how. If set to false, the data cannot be used for searches,
but can still be retrieved from the index if store is set to true. See Analyzers. Values are true or
false. Default is true

¢ store - If true, the value is returned in the search result; otherwise, the value is not returned. Values
are true or false. Default is false.

Note: If you do not set the store parameter, the index data results for the document are not returned in
response to a query.

Example search index function:

function(doc) {
index("default", doc._id);
if (doc.min_length) {
index("min_length", doc.min_length, {"store": true});

(continues on next page)

146 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

(continued from previous page)

if (doc.diet) {
index("diet", doc.diet, {"store": true});
}
if (doc.latin_name) {
index("latin_name", doc.latin_name, {"store': true});
}
if (doc.class) {
index("class", doc.class, {"store": true});

}

Index guard clauses

The index function requires the name of the data field to index as the second parameter. However, if that data field
does not exist for the document, an error occurs. The solution is to use an appropriate ‘guard clause’ that checks if
the field exists, and contains the expected type of data, before any attempt to create the corresponding index.

Example of failing to check whether the index data field exists:

if (doc.min_length) {
index("min_length", doc.min_length, {"store": true});

}

You might use the JavaScript typeof function to implement the guard clause test. If the field exists and has the
expected type, the correct type name is returned, so the guard clause test succeeds and it is safe to use the index
function. If the field does not exist, you would not get back the expected type of the field, therefore you would not
attempt to index the field.

JavaScript considers a result to be false if one of the following values is tested:
* ‘undefined’
e null
* The number +0
e The number -0
¢ NaN (not a number)
e “” (the empty string)

Using a guard clause to check whether the required data field exists, and holds a number, before an attempt to
index:

if (typeof(doc.min_length) === 'number') {
index("min_length", doc.min_length, {"store": true});

}

Use a generic guard clause test to ensure that the type of the candidate data field is defined.

Example of a ‘generic’ guard clause:

if (typeof(doc.min_length) !== 'undefined') {
// The field exists, and does have a type, so we can proceed to index using it.

3.3. Search 147

Apache CouchDB®, Release 3.3.3

3.3

.2 Analyzers

Analyzers are settings that define how to recognize terms within text. Analyzers can be helpful if you need to index
multiple languages.

Here’s the list of generic analyzers, and their descriptions, that are supported by search:

e classic - The standard Lucene analyzer, circa release 3.1.

* email - Like the standard analyzer, but tries harder to match an email address as a complete token.

* keyword - Input is not tokenized at all.

e simple - Divides text at non-letters.

* standard - The default analyzer. It implements the Word Break rules from the Unicode Text Segmentation

algorithm

* whitespace - Divides text at white space boundaries.

Example analyzer document:

{

"_id": "_design/analyzer_example",
"indexes": {
"INDEX_NAME": {
"index": "function (doc) { ... }",
"analyzer": "$ANALYZER_NAME"

Language-specific analyzers

These analyzers omit common words in the specific language, and many also remove prefixes and suffixes. The
name of the language is also the name of the analyzer. See package org.apache.lucene.analysis for more informa-

tion.

Language Analyzer

arabic org.apache.lucene.analysis.ar.ArabicAnalyzer

armenian org.apache.lucene.analysis.hy. ArmenianAnalyzer

basque org.apache.lucene.analysis.eu.Basque Analyzer

bulgarian | org.apache.lucene.analysis.bg.BulgarianAnalyzer

brazilian | org.apache.lucene.analysis.br.BrazilianAnalyzer

catalan org.apache.lucene.analysis.ca.CatalanAnalyzer

cjk org.apache.lucene.analysis.cjk.CJKAnalyzer

chinese org.apache.lucene.analysis.cn.smart.SmartChinese Analyzer

czech org.apache.lucene.analysis.cz.CzechAnalyzer

danish org.apache.lucene.analysis.da.DanishAnalyzer

dutch org.apache.lucene.analysis.nl.DutchAnalyzer

english org.apache.lucene.analysis.en.EnglishAnalyzer

finnish org.apache.lucene.analysis.fi.FinnishAnalyzer

french org.apache.lucene.analysis.fr.FrenchAnalyzer

german org.apache.lucene.analysis.de.GermanAnalyzer

greek org.apache.lucene.analysis.el.Greek Analyzer

galician org.apache.lucene.analysis.gl.GalicianAnalyzer

hindi org.apache.lucene.analysis.hi.HindiAnalyzer

hungarian | org.apache.lucene.analysis.hu.HungarianAnalyzer

indonesian | org.apache.lucene.analysis.id.IndonesianAnalyzer

continues on next page

148 Chapter 3. Design Documents

http://www.unicode.org/reports/tr29/
http://www.unicode.org/reports/tr29/
http://en.wikipedia.org/wiki/Stemming
https://lucene.apache.org/core/4_6_1/core/org/apache/lucene/analysis/package-summary.html

Apache CouchDB®, Release 3.3.3

Table 1 — continued from previous page

Language Analyzer

irish org.apache.lucene.analysis.ga.IrishAnalyzer
italian org.apache.lucene.analysis.it.ItalianAnalyzer
japanese org.apache.lucene.analysis.ja.Japanese Analyzer
japanese org.apache.lucene.analysis.ja.JapaneseTokenizer
latvian org.apache.lucene.analysis.lv.LatvianAnalyzer
norwegian | org.apache.lucene.analysis.no.NorwegianAnalyzer
persian org.apache.lucene.analysis.fa.PersianAnalyzer
polish org.apache.lucene.analysis.pl.PolishAnalyzer
portuguese | org.apache.lucene.analysis.pt.PortugueseAnalyzer
romanian org.apache.lucene.analysis.ro.RomanianAnalyzer
russian org.apache.lucene.analysis.ru.RussianAnalyzer
spanish org.apache.lucene.analysis.es.SpanishAnalyzer
swedish org.apache.lucene.analysis.sv.SwedishAnalyzer
thai org.apache.lucene.analysis.th.ThaiAnalyzer
turkish org.apache.lucene.analysis.tr. TurkishAnalyzer

Note:

and defaultStopTags.

The japanese analyzer, org.apache.lucene.analysis.ja.JapaneseTokenizer, includes DEFAULT_MODE

Note:

Language-specific analyzers are optimized for the specified language. You cannot combine a generic

analyzer with a language-specific analyzer. Instead, you might use a per field analyzer to select different analyzers
for different fields within the documents.

Per-field analyzers

The perfield analyzer configures multiple analyzers for different fields.

Example of defining different analyzers for different fields:

{

"_id":

"indexes":
"INDEX_NAME": {

"analyzer": {

"index":

{

"_design/analyzer_example",

"name": "perfield",

"default":
"fields":

"english",

{

"spanish": "spanish",
"german": "german"

3

"function (doc) { ... }"

3.3. Search

149

Apache CouchDB®, Release 3.3.3

Stop words

Stop words are words that do not get indexed. You define them within a design document by turning the analyzer
string into an object.

Note: The keyword, simple, and whitespace analyzers do not support stop words.

The default stop words for the standard analyzer are included below:

"a", "an", "and", "are", "as", "at", "be", "but", "by", "for", "if",
Ilinll’ "into"’ "iS"’ Ilitll’ |lnoll’ ”not"’ llofll’ "On"’ "Or"’ llsuchll,
"that", "the", "their", "then", "there", "these", "they", "this",
"to", "was", "will", "with"

Example of defining non-indexed (‘stop’) words:

{
"_id": "_design/stop_words_example",
"indexes": {
"INDEX_NAME": {
"analyzer": {
"name": "portuguese",
"stopwords": [
"foo",
"bar",
"baz"
]
}’
"index": "function (doc) { ... }"
}
}
}

Testing analyzer tokenization

You can test the results of analyzer tokenization by posting sample data to the _search_analyze endpoint.

Example of using HTTP to test the keyword analyzer:

POST /_search_analyze HTTP/1.1
Content-Type: application/json
{"analyzer":"keyword", "text":"ablanks@renovations.com"}

Example of using the command line to test the keyword analyzer:

curl 'https://$HOST:5984/_search_analyze' -H 'Content-Type: application/json'
-d '"{"analyzer":"keyword", "text":"ablanks@renovations.com"}'

Result of testing the keyword analyzer:

{
"tokens": [
"ablanks@renovations.com"

Example of using HTTP to test the standard analyzer:

150 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

POST /_search_analyze HTTP/1.1
Content-Type: application/json

{"analyzer":"standard", "text":"ablanks@renovations.com"}

Example of using the command line to test the standard analyzer:

curl 'https://$HOST:5984/_search_analyze' -H 'Content-Type: application/json'

-d '{"analyzer":"standard", "text":"ablanks@renovations.com"}'

Result of testing the standard analyzer:

{

"tokens": [
"ablanks",
"renovations.com"

]

}

3.3.3 Queries

After you create a search index, you can query it.

e Issue a partition query using: GET /$DATABASE/_partition/$PARTITION_KEY/_design/$DDOC/
_search/$INDEX_NAME

* Issue a global query using: GET /$DATABASE/_design/$DDOC/_search/$INDEX_NAME
Specify your search by using the query parameter.

Example of using HTTP to query a partitioned index:

GET /$DATABASE/_partition/$PARTITION_KEY/_design/$DDOC/_search/$INDEX_NAME?include_
—.docs=true&query="*:*"&limit=1 HTTP/1.1
Content-Type: application/json

Example of using HTTP to query a global index:

GET /$DATABASE/_design/$DDOC/_search/$INDEX_NAME?include_docs=true&query="%:*"&
~limit=1 HTTP/1.1
Content-Type: application/json

Example of using the command line to query a partitioned index:

curl https://$HOST:5984/$DATABASE/ _partition/$PARTITION_KEY/_design/$DDOC/
_search/$INDEX_NAME?include_docs=true\&query="":*"\&limit=1 \

Example of using the command line to query a global index:

curl https://$HOST:5984/$DATABASE/_design/$DDOC/_search/$INDEX_NAME?
include_docs=true\&query="*:*"\&limit=1 \

3.3. Search 151

Apache CouchDB®, Release 3.3.3

Query Parameters

A full list of query parameters can be found in the API Reference.

You must enable faceting before you can use the following parameters:
* counts
e drilldown

e ranges

Note: Do not combine the bookmark and stale options. These options constrain the choice of shard replicas
to use for the response. When used together, the options might cause problems when contact is attempted with
replicas that are slow or not available.

Relevance
When more than one result might be returned, it is possible for them to be sorted. By default, the sorting order is
determined by ‘relevance’.

Relevance is measured according to Apache Lucene Scoring. As an example, if you search a simple database for
the word example, two documents might contain the word. If one document mentions the word example 10 times,
but the second document mentions it only twice, then the first document is considered to be more ‘relevant’.

If you do not provide a sort parameter, relevance is used by default. The highest scoring matches are returned
first.

If you provide a sort parameter, then matches are returned in that order, ignoring relevance.

If you want to use a sort parameter, and also include ordering by relevance in your search results, use the special
fields -<score> or <score> within the sort parameter.

POSTing search queries

Instead of using the GET HTTP method, you can also use POST. The main advantage of POST queries is that they
can have a request body, so you can specify the request as a JSON object. Each parameter in the query string of a
GET request corresponds to a field in the JSON object in the request body.

Example of using HTTP to POST a search request:

POST /db/_design/ddoc/_search/searchname HTTP/1.1
Content-Type: application/json

Example of using the command line to POST a search request:

curl 'https://$HOST:5984/db/_design/ddoc/_search/searchname’ -X POST -H 'Content-
—Type: application/json' -d @search.json

Example JSON document that contains a search request:

{
"q": "index:my query",
"sort": "foo",
"limit": 3

}

152 Chapter 3. Design Documents

https://lucene.apache.org/core/3_6_0/scoring.html

Apache CouchDB®, Release 3.3.3

3.3.4 Query syntax

The CouchDB search query syntax is based on the Lucene syntax. Search queries take the form of name:value
unless the name is omitted, in which case they use the default field, as demonstrated in the following examples:

Example search query expressions:

// Birds
class:bird

// Animals that begin with the letter "1"
17‘:

// Carnivorous birds
class:bird AND diet:carnivore

// Herbivores that start with letter "1"
1% AND diet:herbivore

// Medium-sized herbivores
min_length:[1 TO 3] AND diet:herbivore

// Herbivores that are 2m long or less
diet:herbivore AND min_length:[-Infinity TO 2]

// Mammals that are at least 1.5m long
class:mammal AND min_length:[1.5 TO Infinity]

// Find "Meles meles"
latin_name:"Meles meles"

// Mammals who are herbivore or carnivore
diet: (herbivore OR omnivore) AND class:mammal

// Return all results

*

Queries over multiple fields can be logically combined, and groups and fields can be further grouped. The available
logical operators are case-sensitive and are AND, +, OR, NOT and -. Range queries can run over strings or numbers.

If you want a fuzzy search, you can run a query with ~ to find terms like the search term. For instance, 1ook~ finds
the terms book and took.

Note: If the lower and upper bounds of a range query are both strings that contain only numeric digits, the bounds
are treated as numbers not as strings. For example, if you search by using the query mod_date:["20170101" TO
"20171231"], the results include documents for which mod_date is between the numeric values 20170101 and
20171231, not between the strings “20170101” and “20171231”".

You can alter the importance of a search term by adding * and a positive number. This alteration makes matches
containing the term more or less relevant, proportional to the power of the boost value. The default value is 1,
which means no increase or decrease in the strength of the match. A decimal value of O - 1 reduces importance.
making the match strength weaker. A value greater than one increases importance, making the match strength
stronger.

Wildcard searches are supported, for both single (?) and multiple (*) character searches. For example, dat? would
match date and data, whereas dat* would match date, data, database, and dates. Wildcards must come
after the search term.

3.3. Search 153

http://lucene.apache.org/core/4_3_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#Overview

Apache CouchDB®, Release 3.3.3

Use *:* to return all results.

If the search query does not specify the "group_field" argument, the response contains a bookmark. If this
bookmark is later provided as a URL parameter, the response skips the rows that were seen already, making it
quick and easy to get the next set of results.

Note: The response never includes a bookmark if the "group_field" parameter is included in the search query.
See group_field parameter.

Note: The group_field, group_limit, and group_sort options are only available when making global
queries.

The following characters require escaping if you want to search on them:

+-&& [V (CDHYO{}YLIA"~*2 1 \/

To escape one of these characters, use a preceding backslash character (\).

The response to a search query contains an order field for each of the results. The order field is an array where
the first element is the field or fields that are specified in the sort parameter. See the sort parameter. If no sort
parameter is included in the query, then the order field contains the Lucene relevance score. If you use the ‘sort
by distance’ feature as described in geographical searches, then the first element is the distance from a point. The
distance is measured by using either kilometers or miles.

Note: The second element in the order array can be ignored. It is used for troubleshooting purposes only.

Faceting

CouchDB Search also supports faceted searching, enabling discovery of aggregate information about matches
quickly and easily. You can match all documents by using the special ?q="*:* query syntax, and use the returned
facets to refine your query. To indicate that a field must be indexed for faceted queries, set {"facet": true} in
its options.

Example of search query, specifying that faceted search is enabled:

function(doc) {
index("type", doc.type, {"facet": true});
index("price", doc.price, {"facet": true});

To use facets, all the documents in the index must include all the fields that have faceting enabled. If your documents
do not include all the fields, you receive a bad_request error with the following reason, “The field_name does
not exist.” If each document does not contain all the fields for facets, create separate indexes for each field. If you
do not create separate indexes for each field, you must include only documents that contain all the fields. Verify
that the fields exist in each document by using a single if statement.

Example if statement to verify that the required fields exist in each document:

if (typeof doc.town == "string" && typeof doc.name == "string") {
index("town", doc.town, {facet: true});
index("name", doc.name, {facet: truel});

}

154 Chapter 3. Design Documents

https://lucene.apache.org/core/3_6_0/scoring.html

Apache CouchDB®, Release 3.3.3

Counts

Note: The counts option is only available when making global queries.

The counts facet syntax takes a list of fields, and returns the number of query results for each unique value of each
named field.

Note: The count operation works only if the indexed values are strings. The indexed values cannot be mixed
types. For example, if 100 strings are indexed, and one number, then the index cannot be used for count operations.
You can check the type by using the typeof operator, and convert it by using the parseInt, parseFloat, or .
toString() functions.

Example of a query using the counts facet syntax:

?q=*:*&counts=["type"]

Example response after using of the counts facet syntax:

{
"total_rows":100000,
"bookmark":"g...",
"rows":[...],
"counts":{
"type":{
"sofa": 10,
"chair": 100,
"lamp": 97
}
}
}
Drilldown

Note: The drilldown option is only available when making global queries.

You can restrict results to documents with a dimension equal to the specified label. Restrict the results by adding

drilldown=["dimension","label"] to a search query. You can include multiple drilldown parameters to
restrict results along multiple dimensions.

GET /things/_design/inventory/_search/fruits?q=*:*&drilldown=["state","0ld"]&
—drilldown=["item", "apple"]&include_docs=true HTTP/1.1

For better language interoperability, you can achieve the same by supplying a list of lists:

GET /things/_design/inventory/_search/fruits?q=*:*&drilldown=[["state","o0ld"],["item",
—"apple"]]&include_docs=true HTTP/1.1

You can also supply a list of lists for drilldown in bodies of POST requests.

Note that, multiple values for a single key in a drilldown means an OR relation between them and there is an AND
relation between multiple keys.

Using a drilldown parameter is similar to using key:value in the q parameter, but the drilldown parameter
returns values that the analyzer might skip.

3.3. Search 155

Apache CouchDB®, Release 3.3.3

For example, if the analyzer did not index a stop word like "a", using drilldown returns it when you specify
drilldown=["key","a"].

Ranges

Note: The ranges option is only available when making global queries.

The range facet syntax reuses the standard Lucene syntax for ranges to return counts of results that fit into each
specified category. Inclusive range queries are denoted by brackets ([, 1). Exclusive range queries are denoted by
curly brackets ({, }).

Note: The range operation works only if the indexed values are numbers. The indexed values cannot be mixed
types. For example, if 100 strings are indexed, and one number, then the index cannot be used for range operations.
You can check the type by using the typeof operator, and convert it by using the parseInt, parseFloat, or .
toString() functions.

Example of a request that uses faceted search for matching ranges:

?7q=*:*&ranges={"price":{"cheap":"[0 TO 100]","expensive":"{100 TO Infinity}"}}

Example results after a ranges check on a faceted search:

{
"total_rows":100000,
"bookmark":"g...",
"rows":[...],
"ranges": {
"price": {
"expensive": 278682,
"cheap": 257023
}
}
}

3.3.5 Geographical searches

In addition to searching by the content of textual fields, you can also sort your results by their distance from a
geographic coordinate using Lucene’s built-in geospatial capabilities.

To sort your results in this way, you must index two numeric fields, representing the longitude and latitude.

Note: You can also sort your results by their distance from a geographic coordinate using Lucene’s built-in
geospatial capabilities.

You can then query by using the special <distance. ..> sort field, which takes five parameters:
* Longitude field name: The name of your longitude field (mylon in the example).
* Latitude field name: The name of your latitude field (mylat in the example).
* Longitude of origin: The longitude of the place you want to sort by distance from.
* Latitude of origin: The latitude of the place you want to sort by distance from.

e Units: The units to use: km for kilometers or mi for miles. The distance is returned in the order field.

156 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

You can combine sorting by distance with any other search query, such as range searches on the latitude and
longitude, or queries that involve non-geographical information.

That way, you can search in a bounding box, and narrow down the search with extra criteria.

Example geographical data:

{
"name":"Aberdeen, Scotland",
"lat":57.15,
"lon":-2.15,
"type":"city"
}

Example of a design document that contains a search index for the geographic data:

function(doc) {
if (doc.type && doc.type == 'city') {
index('city', doc.name, {'store': true});
index('lat', doc.lat, {'store': true});
index('lon', doc.lon, {'store': true});

An example of using HTTP for a query that sorts cities in the northern hemisphere by their distance to New York:

GET /examples/_design/cities-designdoc/_search/cities?q=lat: [0+T0+90]&sort="<distance,
—lon,lat,-74.0059,40.7127 ,km>" HTTP/1.1

An example of using the command line for a query that sorts cities in the northern hemisphere by their distance to
New York:

curl 'https://$HOST:5984/examples/_design/cities-designdoc/_search/cities?
—g=lat:[0+TO+90]&sort="<distance,lon,lat,-74.0059,40.7127 ,km>""

Example (abbreviated) response, containing a list of northern hemisphere cities sorted by distance to New York:

{
"total_rows": 205,
"bookmark": "glA...XIU",

"rows": [
{

"id": "city180",

"order": [
8.530665755719783,
18

1,

"fields": {

"city": "New York, N.Y.",
"lat": 40.78333333333333,
"lon": -73.96666666666667

}
1,
{
"id": "cityl77",
"order": [
13.756343205985946,
17
1,

(continues on next page)

3.3. Search 157

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"fields": {
"city": "Newark, N.J.",
"lat": 40.733333333333334,
"lon": -74.16666666666667

}
1
{
"id": "cityl178",
"order": [
113.53603438866077,
26
1,
"fields": {
"city": "New Haven, Conn.",
"lat": 41.31666666666667,
"lon": -72.91666666666667
}
}

3.3.6 Highlighting search terms
Sometimes it is useful to get the context in which a search term was mentioned so that you can display more
emphasized results to a user.

To get more emphasized results, add the highlight_fields parameter to the search query. Specify the field
names for which you would like excerpts, with the highlighted search term returned.

By default, the search term is placed in tags to highlight it, but the highlight can be overridden by using the
highlights_pre_tag and highlights_post_tag parameters.

The length of the fragments is 100 characters by default. A different length can be requested with the
highlights_size parameter.

The highlights_number parameter controls the number of fragments that are returned, and defaults to 1.
In the response, a highlights field is added, with one subfield per field name.

For each field, you receive an array of fragments with the search term highlighted.

Note: For highlighting to work, store the field in the index by using the store: true option.

Example of using HTTP to search with highlighting enabled:

GET /movies/_design/searches/_search/movies?q=movie_name:Azazel&highlight_fields=[
—"movie_name"]&highlight_pre_tag="**"&highlight_post_tag="#**"&highlights_size=30&
~highlights_number=2 HTTP/1.1

Authorization:

Example of using the command line to search with highlighting enabled:

curl "https://$HOST:5984/movies/_design/searches/_search/movies?q=movie_name:Azazel&
—highlight_fields=\[\"movie_name\"\]&ighlight_pre_tag=\"**\"&ighlight_post_tag=\
< "**\"®highlights_size=30&highlights_number=2

Example of highlighted search results:

158 Chapter 3. Design Documents

Apache CouchDB®, Release 3.3.3

{
"highlights": {
"movie_name": [
" on the Azazel Orient Express",
" Azazel manuals, you"
]
}
}

Note: Previously, the functionality provided by CouchDB’s design documents, in combination with document
attachments, was referred to as “CouchApps.” The general principle was that entire web applications could be
hosted in CouchDB, without need for an additional application server.

Use of CouchDB as a combined standalone database and application server is no longer recommended. There
are significant limitations to a pure CouchDB web server application stack, including but not limited to: fully-
fledged fine-grained security, robust templating and scaffolding, complete developer tooling, and most importantly,
a thriving ecosystem of developers, modules and frameworks to choose from.

The developers of CouchDB believe that web developers should pick “the right tool for the right job”. Use CouchDB
as your database layer, in conjunction with any number of other server-side web application frameworks, such as
the entire Node.JS ecosystem, Python’s Django and Flask, PHP’s Drupal, Java’s Apache Struts, and more.

3.3. Search 159

Apache CouchDB®, Release 3.3.3

160 Chapter 3. Design Documents

CHAPTER
FOUR

BEST PRACTICES

In this chapter, we present some of the best ways to use Apache CouchDB. These usage patterns reflect many years
of real-world use. We hope that these will jump-start your next project, or improve the performance of your current
system.

4.1 Document Design Considerations

When designing your database, and your document structure, there are a number of best practices to take into
consideration. Especially for people accustomed to relational databases, some of these techniques may be non-
obvious.

4.1.1 Don’t rely on CouchDB’s auto-UUID generation

While CouchDB will generate a unique identifier for the _id field of any doc that you create, in most cases you are
better off generating them yourself for a few reasons:

* If for any reason you miss the 200 OK reply from CouchDB, and storing the document is attempted again,
you would end up with the same document content stored under multiple _ids. This could easily happen
with intermediary proxies and cache systems that may not inform developers that the failed transaction is
being retried.

e _ids are the only unique enforced value within CouchDB so you might as well make use of this. CouchDB
stores its documents in a B+ tree. Each additional or updated document is stored as a leaf node, and may
require re-writing intermediary and parent nodes. You may be able to take advantage of sequencing your own
ids more effectively than the automatically generated ids if you can arrange them to be sequential yourself.

4.1.2 Alternatives to auto-incrementing sequences

Because of replication, as well as the distributed nature of CouchDB, it is not practical to use auto-incrementing
sequences with CouchDB. These are often used to ensure unique identifiers for each row in a database table.
CouchDB generates unique ids on its own and you can specify your own as well, so you don’t really need a sequence
here. If you use a sequence for something else, you will be better off finding another way to express it in CouchDB
in another way.

161

Apache CouchDB®, Release 3.3.3

4.1.3 Pre-aggregating your data

If your intent for CouchDB is as a collect-and-report model, not a real-time view, you may not need to store a
single document for every event you’re recording. In this case, pre-aggregating your data may be a good idea. You
probably don’t need 1000 documents per second if all you are trying to do is to track summary statistics about those
documents. This reduces the computational pressure on CouchDB’s MapReduce engine(s), as well as reduces its
storage requirements.

In this case, using an in-memory store to summarize your statistical information, then writing out to CouchDB every
10 seconds / 1 minute / whatever level of granularity you need would greatly reduce the number of documents you’ll
put in your database.

Later, you can then further decimate your data by walking the entire database and generating documents to be
stored in a new database with a lower level of granularity (say, 1 document a day). You can then delete the older,
more fine-grained database when you’re done with it.

4.1.4 Designing an application to work with replication
Whilst CouchDB includes replication and a conflict-flagging mechanism, this is not the whole story for building
an application which replicates in a way which users expect.

Here we consider a simple example of a bookmarks application. The idea is that a user can replicate their own
bookmarks, work with them on another machine, and then synchronise their changes later.

Let’s start with a very simple definition of bookmarks: an ordered, nestable mapping of name to URL. Internally
the application might represent it like this:

L

{"name" : "Weather", "url":"http://www.bbc.co.uk/weather"},
{"name" :"News", "url":"http://news.bbc.co.uk/"},

"name":"Tech", "bookmarks": [
{"name" :"Register"”, "url":"http://www.theregister.co.uk/"},
{"name" :"CouchDB", "url":"http://couchdb.apache.org/"}

1}
]

It can then present the bookmarks menu and sub-menus by traversing this structure.

Now consider this scenario: the user has a set of bookmarks on her PC, and then replicates it to her laptop. On the
laptop, she changes the News link to point to CNN, renames ‘“Register” to “The Register”, and adds a new link to
slashdot just after it. On the desktop, her husband deletes the Weather link, and adds a new link to CNET in the
Tech folder.

So after these changes, the laptop has:

[
{"name": "Weather", "url":"http://www.bbc.co.uk/weather"},
{"name":"News", "url":"http://www.cnn.com/"},
{"name" :"Tech", "bookmarks": [
{"name":"The Register", "url":"http://www.theregister.co.uk/"},
{"name" :"Slashdot", "url":"http://www.slashdot.new/"},
{"name" :"CouchDB", "url":"http://couchdb.apache.org/"}
1}
]
and the PC has:
[
{"name" :"News", "url":"http://www.cnn.com/"},
{"name":"Tech", "bookmarks": [

(continues on next page)

162 Chapter 4. Best Practices

https://en.wikipedia.org/wiki/Downsampling_(signal_processing)

Apache CouchDB®, Release 3.3.3

(continued from previous page)

{"name" :"Register"”, "url":"http://www.theregister.co.uk/"},
{'"name" :"CouchDB", "url":"http://couchdb.apache.org/"},
{"name" :"CNET", "url":"http://news.cnet.com/"}
1}
]

Upon the next synchronisation, we want the expected merge to take place. That is: links which were changed,
added or deleted on one side are also changed, added or deleted on the other side - with no human intervention
required unless absolutely necessary.

We will also assume that both sides are doing a CouchDB “compact” operation periodically, and are disconnected
for more than this time before they resynchronise.

All of the approaches below which allow automated merging of changes rely on having some sort of history, back
to the point where the replicas diverged.

CouchDB does not provide a mechanism for this itself. It stores arbitrary numbers of old _ids for one document
(trunk now has a mechanism for pruning the _id history), for the purposes of replication. However it will not keep
the documents themselves through a compaction cycle, except where there are conflicting versions of a document.

Do not rely on the CouchDB revision history mechanism to help you build an application-level version history. Its
sole purpose is to ensure eventually consistent replication between databases. It is up to you to maintain history
explicitly in whatever form makes sense for your application, and to prune it to avoid excessive storage utilisation,
whilst not pruning past the point where live replicas last diverged.

Approach 1: Single JSON doc

The above structure is already valid JSON, and so could be represented in CouchDB just by wrapping it in an object
and storing as a single document:

{

"bookmarks":
// ... same as above

}

This makes life very easy for the application, as the ordering and nesting is all taken care of. The trouble here is
that on replication, only two sets of bookmarks will be visible: example B and example C. One will be chosen as
the main revision, and the other will be stored as a conflicting revision.

At this point, the semantics are very unsatisfactory from the user’s point of view. The best that can be offered is a
choice saying “Which of these two sets of bookmarks do you wish to keep: B or C?” However neither represents
the desired outcome. There is also insufficient data to be able to correctly merge them, since the base revision A is
lost.

This is going to be highly unsatisfactory for the user, who will have to apply one set of changes again manually.

Approach 2: Separate document per bookmark

An alternative solution is to make each field (bookmark) a separate document in its own right. Adding or deleting
a bookmark is then just a case of adding or deleting a document, which will never conflict (although if the same
bookmark is added on both sides, then you will end up with two copies of it). Changing a bookmark will only
conflict if both sides made changes to the same one, and then it is reasonable to ask the user to choose between
them.

Since there will now be lots of small documents, you may either wish to keep a completely separate database for
bookmarks, or else add an attribute to distinguish bookmarks from other kinds of document in the database. In the
latter case, a view can be made to return only bookmark documents.

Whilst replication is now fixed, care is needed with the “ordered” and “nestable” properties of bookmarks.

4.1. Document Design Considerations 163

Apache CouchDB®, Release 3.3.3

For ordering, one suggestion is to give each item a floating-point index, and then when inserting an object between
A and B, give it an index which is the average of A and B’s indices. Unfortunately, this will fail after a while when
you run out of precision, and the user will be bemused to find that their most recent bookmarks no longer remember
the exact position they were put in.

A better way is to keep a string representation of index, which can grow as the tree is subdivided. This will not
suffer the above problem, but it may result in this string becoming arbitrarily long after time. They could be
renumbered, but the renumbering operation could introduce a lot of conflicts, especially if attempted by both sides
independently.

For “nestable”, you can have a separate doc which represents a list of bookmarks, and each bookmark can have a
“belongs to” field which identifies the list. It may be useful anyway to be able to have multiple top-level bookmark
sets (Bob’s bookmarks, Jill’s bookmarks etc). Some care is needed when deleting a list or sub-list, to ensure that
all associated bookmarks are also deleted, otherwise they will become orphaned.

Building the entire bookmark set can be performed through the use of emitting a compound key that describes the
path to the document, then using group levels to retrieve the position of the tree in the document. The following
code excerpt describes a tree of files, where the path to the file is stored in the document under the "path" key:

// map function
function(doc) {

if (doc.type === "file") {
if (doc.path.substr(-1) === "/") {
var raw_path = doc.path.slice(0, -1);
} else {
var raw_path = doc.path;
}
emit (raw_path.split('/'), 1);
}
}
// reduce
_sum
This will emit rows into the view of the form ["opt", "couchdb", "etc", "local.ini"] for a doc.path

of /opt/couchdb/etc/local.ini. You can then query a list of files in the /opt/couchdb/etc directory by
specifying a startkey of ["opt", "couchdb", "etc"] and an endkey of ["opt", "couchdb", "etc",
{}1.

Approach 3: Immutable history / event sourcing

Another approach to consider is Event Sourcing or Command Logging, as implemented in many NoSQL databases
and as used in many operational transformation systems.

In this model, instead of storing individual bookmarks, you store records of changes made - “Bookmark added”,
“Bookmark changed”, “Bookmark moved”, “Bookmark deleted”. These are stored in an append-only fashion.
Since records are never modified or deleted, only added to, there are never any replication conflicts.

These records can also be stored as an array in a single CouchDB document. Replication can cause a conflict, but
in this case it is easy to resolve by simply combining elements from the two arrays.

In order to see the full set of bookmarks, you need to start with a baseline set (initially empty) and run all the
change records since the baseline was created; and/or you need to maintain a most-recent version and update it
with changes not yet seen.

Care is needed after replication when merging together history from multiple sources. You may get different
results depending on how you order them - consider taking all A’s changes before B’s, taking all B’s before A’s, or
interleaving them (e.g. if each change has a timestamp).

Also, over time the amount of storage used can grow arbitrarily large, even if the set of bookmarks itself is small.
This can be controlled by moving the baseline version forwards and then keeping only the changes after that point.

164 Chapter 4. Best Practices

https://martinfowler.com/eaaDev/EventSourcing.html
https://en.wikipedia.org/wiki/Operational_transformation

Apache CouchDB®, Release 3.3.3

However, care is needed not to move the baseline version forward so far that there are active replicas out there
which last synchronised before that time, as this may result in conflicts which cannot be resolved automatically.

If there is any uncertainty, it is best to present the user with a prompt to assist with merging the content in the
application itself.

Approach 4: Keep historic versions explicitly

If you are going to keep a command log history, then it may be simpler just to keep old revisions of the bookmarks
list itself around. The intention is to subvert CouchDB’s automatic behaviour of purging old revisions, by keeping
these revisions as separate documents.

You can keep a pointer to the ‘most current’ revision, and each revision can point to its predecessor. On replication,
merging can take place by diffing each of the previous versions (in effect synthesising the command logs) back to
a common ancestor.

This is the sort of behaviour which revision control systems such as Git implement as a matter of routine, although
generally comparing text files line-by-line rather than comparing JSON objects field-by-field.

Systems like Git will accumulate arbitrarily large amounts of history (although they will attempt to compress it by
packing multiple revisions so that only their diffs are stored). With Git you can use “history rewriting” to remove
old history, but this may prohibit merging if history doesn’t go back far enough in time.

4.1.5 Adding client-side security with a translucent database

Many applications do not require a thick layer of security at the server. It is possible to use a modest amount of
encryption and one-way functions to obscure the sensitive columns or key-value pairs, a technique often called a
translucent database. (See a description.)

The simplest solutions use a one-way function like SHA-256 at the client to scramble the name and password before
storing the information. This solution gives the client control of the data in the database without requiring a thick
layer on the database to test each transaction. Some advantages are:

* Only the client or someone with the knowledge of the name and password can compute the value of SHA256
and recover the data.

* Some columns are still left in the clear, an advantage for computing aggregated statistics.
* Computation of SHA256 is left to the client side computer which usually has cycles to spare.

* The system prevents server-side snooping by insiders and any attacker who might penetrate the OS or any of
the tools running upon it.

There are limitations:

* There is no root password. If the person forgets their name and password, their access is gone forever. This
limits its use to databases that can continue by issuing a new user name and password.

There are many variations on this theme detailed in the book Translucent Databases, including:
* Adding a backdoor with public-key cryptography.
* Adding a second layer with steganography.
* Dealing with typographical errors.

* Mixing encryption with one-way functions.

4.1. Document Design Considerations 165

http://git-scm.org/
http://www.wayner.org/node/52
http://www.wayner.org/node/46

Apache CouchDB®, Release 3.3.3

4.2 Document submission using HTML Forms

It is possible to write to a CouchDB document directly from an HTML form by using a document update function.
Here’s how:

4.2.1 The HTML form

First, write an HTML form. Here’s a simple “Contact Us” form excerpt:

<form action="/dbname/_design/ddocname/_update/contactform”" method="post">
<div>
<label for="name">Name:</label>
<input type="text" id="name" name="name" />
</div>
<div>
<label for="mail">Email:</label>
<input type="text" id="mail" name="email" />
</div>
<div>
<label for="msg">Message:</label>
<textarea id="msg" name="message"></textarea>
</div>
</form>

Customize the /dbname/_design/ddocname/_update/contactform portion of the form action URL to reflect
the exact path to your database, design document and update function (see below).

As CouchDB no longer recommends the use of CouchDB-hosted web applications , you may want to use a reverse
proxy to expose CouchDB as a subdirectory of your web application. If so, add that prefix to the action destination
in the form.

Another option is to alter CouchDB’s CORS settings and use a cross-domain POST. Be sure you understand all
security implications before doing this!

4.2.2 The update function

Then, write an update function. This is the server-side JavaScript function that will receive the POST-ed data.

The first argument to the function will be the document that is being processed (if it exists). Because we are using
POST and not PUT, this should be empty in our scenario - but we should check to be sure. The POST-ed data will
be passed as the second parameter to the function, along with any query parameters and the full request headers.

Here’s a sample handler that extracts the form data, generates a document _id based on the email address and
timestamp, and saves the document. It then returns a JSON success response back to the browser.

function(doc, req) {

if (doc) {
return [doc, to]SON({"error": "request already filed"})]
3

if ! (req.form && req.form.email) {
return [null, to]SON({"error": "incomplete form"})]

}

var date = new Date()
var newdoc = req.form

(continues on next page)

166 Chapter 4. Best Practices

Apache CouchDB®, Release 3.3.3

(continued from previous page)

newdoc._id = req.form.email + "_" + date.toISOString()

return [newdoc, toJSON({"success":"ok"})]

Place the above function in your design document under the updates key.

Note that this function does not attempt any sort of input validation or sanitization. That is best handled by a
validate document update function instead. (A “VDU” will validate any document written to the database, not just
those that use your update function.)

If the first element passed to return is a document, the HTTP response headers will include X-Couch-1Id, the
_id value for the newly created document, and X-Couch-Update-NewRev, the _rev value for the newly created
document. This is handy if your client-side code wants to access or update the document in a future call.

4.2.3 Example output

Here’s the worked sample above, using curl to simulate the form POST.

$ curl -X PUT localhost:5984/testdb/_design/myddoc -d '{ "updates": { "contactform":
—"function(doc, req) { ... }" } }'
{"ok":true,"id":"_design/myddoc","rev":"1-2a2b0951fcaf7287817573b03bbad2ed"}

$ curl --data "name=Lin&email=1in@example.com&message=I Love CouchDB" http://
—»localhost:5984/testdb/_design/myddoc/_update/contactform
Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 5984 (#1)

> POST /testdb/_design/myddoc/_update/contactform HTTP/1.1
> Host: localhost:5984

> User-Agent: curl/7.59.0

> Accept: */*

> Content-Length: 53

> Content-Type: application/x-www-form-urlencoded

>

* upload completely sent off: 53 out of 53 bytes

< HTTP/1.1 201 Created

< Content-Length: 16

< Content-Type: text/html; charset=utf-8

< Date: Thu, 05 Apr 2018 19:56:42 GMT

< Server: CouchDB/2.2.0-948al311c (Erlang OTP/19)

< X-Couch-Id: lin%40example.com_2018-04-05T19:51:22.278Z

< X-Couch-Request-ID: 03a5f4fbeld

< X-Couch-Update-NewRev: 1-34483732407fcc6cfc5b60ace48b9da9d
< X-CouchDB-Body-Time: 0

<

Connection #1 to host localhost left intact
{"success":"ok"}

$ curl http://localhost:5984/testdb/lin\@example.com_2018-04-05T19:51:22.278Z
{"_id":"lin@example.com_2018-04-05T19:51:22.278Z"," _rev":"1-
<>34483732407fccb6cfc5b60ace48b9dad”, "'name" :"Lin", "email" : "1lin@example.com", "message":
"I Love CouchDB"}

4.2. Document submission using HTML Forms 167

Apache CouchDB®, Release 3.3.3

4.3 Using an ISO Formatted Date for Document IDs

The ISO 8601 date standard describes a useful scheme for representing a date string in a Year-Month-
DayTHour:Minute:Second.microsecond format. For time-bound documents in a CouchDB database this can be a
very handy way to create a unique identifier, since JavaScript can directly use it to create a Date object. Using this
sample map function:

function(doc) {
var dt = new Date(doc._id);
emit([dt.getDate(), doc.widget], 1);
}

simply use group_level to zoom in on whatever time you wish to use.

curl -X GET "http://localhost:5984/transactions/_design/widget_count/_view/toss?group_
—~level=1"

{"rows": [
{"key":[20],"value":10},
{"key":[21],"value":20}
13

curl -X GET "http://localhost:5984/transactions/_design/widget_count/_view/toss?group_
—level=2"

{"rows": [

{"key":[20,widget], "value":10},
{"key":[21,widget],"value":10},
{"key":[21,thing], "value":10}
13

Another method is using parseint () and datetime.substr() to cut out useful values for a return key:

function (doc) {
var datetime = doc._id;
var year = parselnt(datetime.substr(0, 4));
var month = parseInt(datetime.substr(5, 2), 10);
var day = parselnt(datetime.substr(8, 2), 10);
var hour = parselnt(datetime.substr(ll, 2), 10);
var minute = parseInt(datetime.substr(14, 2), 10);
emit([doc.widget, year, month, day, hour, minute], 1);

4.4 JavaScript development tips

Working with Apache CouchDB’s JavaScript environment is a lot different than working with traditional JavaScript
development environments. Here are some tips and tricks that will ease the difficulty.

* Check the JavaScript version being used by your CouchDB. As of version 3.2.0, this is reported in the output
of GET /_node/_local/_versions. Prior to version 3.2.0, you will need to see which JavaScript library
is installed by your CouchDB binary distribution, provided by your operating system, or linked by your
compilation process.

If the version is 1.8.5, this is an old version of JavaScript, only supporting the ECMA-262 5th edition (“ES5™)
of the language. ES6/2015 and newer constructs cannot be used.

Fortunately, there are many tools available for transpiling modern JavaScript into code compatible with
older JS engines. The Babel Project website, for example, offers an in-browser text editor which transpiles

168 Chapter 4. Best Practices

http://en.wikipedia.org/wiki/ISO_8601
http://babeljs.io/repl

Apache CouchDB®, Release 3.3.3

JavaScript in real-time. Configuring CouchDB-compatibility is as easy as enabling the ENV PRESET option,
and typing “firefox 4.0” into the TARGETS field.

* The 1log() function will log output to the CouchDB log file or stream. You can log strings, objects, and
arrays directly, without first converting to JSON. Use this in conjunction with a local CouchDB instance for
best results.

* Be sure to guard all document accesses to avoid exceptions when fields or subfields are missing: if (doc
&& doc.myarray && doc.myarray.length)...

4.5 View recommendations

Here are some tips and tricks for working with CouchDB’s (JavaScript-based) views.

4.5.1 Deploying a view change in a live environment

It is possible to change the definition of a view, build the index, then make those changes go live without causing
downtime for your application. The trick to making this work is that CouchDB’s JavaScript view index files are
based on the contents of the design document - not its name, _id or revision. This means that two design documents
with identical view code will share the same on-disk view index files.

Here is a worked example, assuming your /db/_design/ddoc needs to be updated.

1. Upload the old design doc to /db/_design/ddoc-o0ld (or copy the document) if you want an easy way to
rollback in case of problems. The ddoc-o0ld document will reference the same view indexes already built
for _design/ddoc.

2. Upload the updated design doc to /db/_design/ddoc-new.

3. Query a view in the new design document to trigger secondary index generation. You can track the indexing
progress via the /_active_tasks endpoint, or through the Fauxton web interface.

4. When the index is done being built, re-upload the updated design document to /db/_design/ddoc (or copy
the document). The ddoc document will now reference the same view indexes already built for _design/
ddoc-new.

5. Delete /db/_design/ddoc-new and/or /db/_design/ddoc-o0ld at your discretion. Don’t forget to trigger
Views cleanup to reclaim disk space after deleting ddoc-o1ld.

The COPY HTTP verb can be used to copy the design document with a single command:

curl -X COPY <URL of source design document> -H "Destination: <ID of destination.
—design document>"

4.6 Reverse Proxies

4.6.1 Reverse proxying with HAProxy

CouchDB recommends the use of HAProxy as a load balancer and reverse proxy. The team’s experience with
using it in production has shown it to be superior for configuration and monitoring capabilities, as well as overall
performance.

CouchDB’s sample haproxy configuration is present in the code repository and release tarball as rel/haproxy.
cfg. It is included below. This example is for a 3 node CouchDB cluster:

4.5. View recommendations 169

http://haproxy.org/
https://github.com/apache/couchdb/blob/main/rel/haproxy.cfg

Apache CouchDB®, Release 3.3.3

global
maxconn 512
spread-checks 5

defaults
mode http
log global
monitor-uri /_haproxy_health_check
option log-health-checks
option httplog
balance roundrobin
option forwardfor
option redispatch
retries 4
option http-server-close
timeout client 150000
timeout server 3600000
timeout connect 500

stats enable
stats uri /_haproxy_stats
stats auth admin:admin # Uncomment for basic auth

frontend http-in
This requires HAProxy 1.5.x
bind *:$HAPROXY_PORT
bind *:5984
default_backend couchdbs

backend couchdbs
option httpchk GET /_up
http-check disable-on-404
server couchdbl x.x.x.x:5984 check inter 5s
server couchdb2 x.x.x.x:5984 check inter 5s
server couchdb2 x.x.x.x:5984 check inter 5s

4.6.2 Reverse proxying with nginx
Basic Configuration

Here’s a basic excerpt from an nginx config file in <nginx config directory>/sites-available/default.
This will proxy all requests from http://domain.com/. .. tohttp://localhost:5984/...

location / {
proxy_pass http://localhost:5984;
proxy_redirect off;
proxy_buffering off;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

Proxy buffering must be disabled, or continuous replication will not function correctly behind nginx.

170 Chapter 4. Best Practices

Apache CouchDB®, Release 3.3.3

Reverse proxying CouchDB in a subdirectory with nginx

It can be useful to provide CouchDB as a subdirectory of your overall domain, especially to avoid CORS concerns.
Here’s an excerpt of a basic nginx configuration that proxies the URL http://domain. com/couchdb to http:/
/localhost: 5984 so that requests appended to the subdirectory, such as http://domain.com/couchdb/db1/
doc1 are proxied to http://localhost:5984/db1l/docl.

location /couchdb {
rewrite * $request_uri;
rewrite A/couchdb/(.*) /$1 break;
proxy_pass http://localhost:5984%uri;
proxy_redirect off;
proxy_buffering off;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

}

Session based replication is default functionality since CouchDB 2.3.0. To enable session based replication with
reverse proxied CouchDB in a subdirectory.

location /_session {
proxy_pass http://localhost:5984/_session;
proxy_redirect off;
proxy_buffering off;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

Authentication with nginx as a reverse proxy

Here’s a sample config setting with basic authentication enabled, placing CouchDB in the /couchdb subdirectory:

location /couchdb {
auth_basic "Restricted";
auth_basic_user_file htpasswd;
rewrite /couchdb/(.*) /$1 break;
proxy_pass http://localhost:5984;
proxy_redirect off;
proxy_buffering off;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_set_header Authorization ;

}

This setup leans entirely on nginx performing authorization, and forwarding requests to CouchDB with no authen-
tication (with CouchDB in Admin Party mode), which isn’t sufficient in CouchDB 3.0 anymore as Admin Party
has been removed. You’d need to at the very least hard-code user credentials into this version with headers.

For a better solution, see Proxy Authentication.

4.6. Reverse Proxies 171

Apache CouchDB®, Release 3.3.3

SSL with nginx

In order to enable SSL, just enable the nginx SSL module, and add another proxy header:

ssl on;

ssl_certificate PATH_TO_YOUR_PUBLIC_KEY.pem;
ssl_certificate_key PATH_TO_YOUR_PRIVATE_KEY.key;
ssl_protocols SSLv3;

ssl_session_cache shared:SSL:1m;

location / {
proxy_pass http://localhost:5984;
proxy_redirect off;
proxy_set_header Host $host;
proxy_buffering off;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Ssl on;

}

The X-Forwarded-Ss1 header tells CouchDB that it should use the https scheme instead of the http scheme.
Otherwise, all CouchDB-generated redirects will fail.

4.6.3 Reverse Proxying with Caddy 2

Caddy ishttps-by-default, and will automatically acquire, install, activate and, when necessary, renew a trusted
SSL certificate for you - all in the background. Certificates are issued by the Let’s Encrypt certificate authority.

Basic configuration

Here’s a basic excerpt from a Caddyfile in /etc/caddy/Caddyfile. This will proxy all requests from http(s):/
/domain.com/... tohttp://localhost:5984/...

domain.com {

reverse_proxy localhost:5984

Reverse proxying CouchDB in a subdirectory with Caddy 2

It can be useful to provide CouchDB as a subdirectory of your overall domain, especially to avoid CORS con-
cerns. Here’s an excerpt of a basic Caddy configuration that proxies the URL http(s) : //domain. com/couchdb
to http://localhost:5984 so that requests appended to the subdirectory, such as http(s)://domain.com/
couchdb/db1/doc1 are proxied to http://localhost:5984/db1l/docl.

domain.com {

reverse_proxy /couchdb/* localhost:5984

172 Chapter 4. Best Practices

Apache CouchDB®, Release 3.3.3

Reverse proxying + load balancing for CouchDB clusters

Here’s a basic excerpt from a Caddyfile in /<path>/<to>/<site>/Caddyfile. This will proxy and evenly dis-
tribute all requests from http(s) : //domain.com/. .. among 3 CouchDB cluster nodes at localhost:15984,
localhost:25984 and localhost:35984.

Caddy will check the status, i.e. health, of each node every 5 seconds; if a node goes down, Caddy will avoid
proxying requests to that node until it comes back online.

domain.com {

reverse_proxy http://localhost:15984 http://localhost:25984 http://
—»localhost:35984 {

1b_policy round_robin

1b_try_interval 500ms

health_interval 5s

}

Authentication with Caddy 2 as a reverse proxy

Here’s a sample config setting with basic authentication enabled, placing CouchDB in the /couchdb subdirectory:

domain.com {

basicauth /couchdb/* {
couch_username couchdb_hashed_password_base64

}

reverse_proxy /couchdb/* localhost:5984

}

This setup leans entirely on nginx performing authorization, and forwarding requests to CouchDB with no authen-
tication (with CouchDB in Admin Party mode), which isn’t sufficient in CouchDB 3.0 anymore as Admin Party
has been removed. You’d need to at the very least hard-code user credentials into this version with headers.

For a better solution, see Proxy Authentication.

4.6.4 Reverse Proxying with Apache HTTP Server

Warning: As of this writing, there is no way to fully disable the buffering between Apache HTTPD Server
and CouchDB. This may present problems with continuous replication. The Apache CouchDB team strongly
recommend the use of an alternative reverse proxy such as haproxy or nginx, as described earlier in this
section.

Basic Configuration

Here’s a basic excerpt for using a VirtualHost block config to use Apache as a reverse proxy for CouchDB.
You need at least to configure Apache with the --enable-proxy --enable-proxy-http options and use a
version equal to or higher than Apache 2.2.7 in order to use the nocanon option in the ProxyPass directive. The
ProxyPass directive adds the X-Forwarded-For header needed by CouchDB, and the ProxyPreserveHost
directive ensures the original client Host header is preserved.

4.6. Reverse Proxies 173

Apache CouchDB®, Release 3.3.3

<VirtualHost *:80>
ServerAdmin webmaster@dummy-host.example.com
DocumentRoot "/opt/websites/web/www/dummy"
ServerName couchdb.localhost
AllowEncodedSlashes On
ProxyRequests Off
KeepAlive Off
<Proxy *>
Order deny,allow
Deny from all
Allow from 127.0.0.1
</Proxy>
ProxyPass / http://localhost:5984 nocanon
ProxyPassReverse / http://localhost:5984
ProxyPreserveHost On
ErrorLog "logs/couchdb.localhost-error_log"
CustomLog "logs/couchdb.localhost-access_log" common
</VirtualHost>

174

Chapter 4. Best Practices

CHAPTER
FIVE

INSTALLATION

5.1 Installation on Unix-like systems

Warning: CouchDB 3.0+ will not run without an admin user being created first. Be sure to create an admin
user before starting CouchDB!

5.1.1 Installation using the Apache CouchDB convenience binary packages
If you are running one of the following operating systems, the easiest way to install CouchDB is to use the conve-
nience binary packages:

e CentOS/RHEL 7

* CentOS/RHEL 8

¢ CentOS/RHEL 9 (with caveats)

¢ Debian 10 (buster)

* Debian 11 (bullseye)

¢ Debian 12 (bookworm)

e Ubuntu 18.04 (bionic)

¢ Ubuntu 20.04 (focal)

e Ubuntu 22.04 (jammy)

These RedHat-style rpm packages and Debian-style deb packages will install CouchDB at /opt/couchdb and
ensure CouchDB is run at system startup by the appropriate init subsystem (SysV-style initd or systemd).

The Debian-style deb packages also pre-configure CouchDB as a standalone or clustered node, prompt for the
address to which it will bind, and a password for the admin user. Responses to these prompts may be pre-seeded
using standard debconf tools. Further details are in the README.Debian file.

For distributions lacking a compatible SpiderMonkey library, Apache CouchDB also provides packages for the
1.8.5 version.

175

https://github.com/apache/couchdb-pkg/blob/main/debian/README.Debian

Apache CouchDB®, Release 3.3.3

Enabling the Apache CouchDB package repository

Debian or Ubuntu: Run the following commands:

sudo apt update && sudo apt install -y curl apt-transport-https gnupg
curl https://couchdb.apache.org/repo/keys.asc | gpg --dearmor | sudo tee /usr/share/
—keyrings/couchdb-archive-keyring.gpg >/dev/null 2>&1
source /etc/os-release
echo "deb [signed-by=/usr/share/keyrings/couchdb-archive-keyring.gpg] https://apache.
—jfrog.io/artifactory/couchdb-deb/ VERSION_CODENAME} main" \

| sudo tee /etc/apt/sources.list.d/couchdb.list >/dev/null

RedHat(<9) or CentOS: Run the following commands:

sudo yum install -y yum-utils
sudo yum-config-manager --add-repo https://couchdb.apache.org/repo/couchdb.repo

RedHat(>=9): Run the following commands:

sudo yum install -y yum-utils

sudo yum-config-manager --add-repo https://couchdb.apache.org/repo/couchdb.repo
Enable EPEL for the SpiderMonkey dependency

sudo dnf config-manager --set-enabled crb

sudo dnf install epel-release epel-next-release

Installing the Apache CouchDB packages

Debian or Ubuntu: Run the following commands:

sudo apt update
sudo apt install -y couchdb

Debian/Ubuntu installs from binaries can be pre-configured for single node or clustered installations. For clusters,
multiple nodes will still need to be joined together and configured consistently across all machines; follow the
Cluster Setup walkthrough to complete the process.

RedHat(<9)/CentOS: Run the command:

sudo yum install -y couchdb

RedHat(>=9): Run the following commands:

sudo yum install -y mozjs78
sudo yum install -y couchdb

Once installed, create an admin user by hand before starting CouchDB, if your installer didn’t do this for you
already.

You can now start the service.

Your installation is not complete. Be sure to complete the Serup steps for a single node or clustered installa-
tion.

Relax! CouchDB is installed and running.

176 Chapter 5. Installation

Apache CouchDB®, Release 3.3.3

GPG keys used for signing the CouchDB repositories

As of 2021.04.25, the repository signing key for both types of supported packages is:

pub rsa8192 2015-01-19 [SC]

390EF70BB1EA12B2773962950EE62FB37A00258D
uid The Apache Software Foundation (Package repository signing key)
—.<root@apache.org>

As of 2021.04.25, the package signing key (only used for rpm packages) is:

pub rsa4096 2017-07-28 [SC] [expires: 2022-07-27]
2EC788AE3F239FA13E82D215CDE711289384AE37
uid Joan Touzet (Apache Code Signing Key) <wohali@apache.org>

As of 2021.11.13, the package signing key (only used for rpm packages) is:

pub rsa4096 2019-09-05 [SC] [expires: 2039-01-02]
®BD7A98499C4AB41C910EE65FCO4DFBCI9657A78E

uid Nicolae Vatamaniuc <vatamane@apache.org>

uid default <vatamane@gmail.com>

All are available from most popular GPG key servers. The rpm signing keys should be listed in the KEYS list as
well.

5.1.2 Installation from source

The remainder of this document describes the steps required to install CouchDB directly from source code.

This guide, as well as the INSTALL.Unix document in the official tarball release are the canonical sources of instal-
lation information. However, many systems have gotchas that you need to be aware of. In addition, dependencies
frequently change as distributions update their archives.

5.1.3 Dependencies

You should have the following installed:
e Erlang OTP (24.x, 25.X)
« ICU
* OpenSSL
* Mozilla SpiderMonkey (1.8.5, 60, 68, 78, 91)
* GNU Make
* GNU Compiler Collection
* help2man
¢ Python (>=3.6) for docs and tests
¢ Java (required for nouveau, minimum version 11, recommended version 19 or 20)

help2man is only need if you plan on installing the CouchDB man pages. Documentation build can be disabled by
adding the --disable-docs flag to the configure script.

5.1. Installation on Unix-like systems 177

https://downloads.apache.org/couchdb/KEYS
http://erlang.org/
http://icu-project.org/
http://www.openssl.org/
https://spidermonkey.dev/
http://www.gnu.org/software/make/
http://gcc.gnu.org/
http://www.gnu.org/s/help2man/
http://python.org/

Apache CouchDB®, Release 3.3.3

Debian-based Systems

You can install the dependencies by running:

sudo apt-get --no-install-recommends -y install \
build-essential pkg-config erlang \
libicu-dev libmozjs185-dev

Be sure to update the version numbers to match your system’s available packages.

RedHat-based (Fedora, CentOS, RHEL) Systems

You can install the dependencies by running:

sudo yum install autoconf autoconf-archive automake \
erlang-asnl erlang-erts erlang-eunit gcc-c++ \
erlang-os_mon erlang-xmerl erlang-erl_interface help2man \
libicu-devel libtool perl-Test-Harness

Warning: To build a release for CouchDB the erlang-reltool package is required, yet on CentOS/RHEL this package
depends on erlang-wx which pulls in wxGTK and several X11 libraries. If CouchDB is being built on a console
only server it might be a good idea to install this in a separate step to the rest of the dependencies, so that the
package and all its dependencies can be removed using the yum history tool after the release is built. (reltool is
needed only during release build but not for CouchDB functioning)

The package can be installed by running:

sudo yum install erlang-reltool

Fedora 36

On Fedora 36, you may need these packages in addition to the ones listed above:
* mozjs91-devel
e erlang-rebar

If the system contains dangling links to Erlang chunk files, the compiler will abort. They can be deleted with the
following command:

find -L /usr/lib64/erlang/lib/ -type 1 -name chunks | xargs rm -f

Fauxton is not built on the Node.js version (v16) shipped by the system. The installation of v12.22.12 can be done
via:

wget https://nodejs.org/download/release/v12.22.12/node-v12.22.12-1linux-x64.tar.gz
mkdir -p /usr/local/lib/nodejs

tar -xvf node-v12.22.12-1linux-x64.tar.gz -C /usr/local/lib/nodejs

export PATH=/usr/local/lib/nodejs/node-v12.22.12-1inux-x64/bin: $PATH

Note that due to a problem with the Python package sphinx-build, it is not possible to compile the documentation
on Fedora 36. You can skip compiling the documentation via:

./configure --disable-docs --spidermonkey-version 91

178 Chapter 5. Installation

Apache CouchDB®, Release 3.3.3

Mac OS X

Follow Installation with Homebrew reference for Mac App installation.

If you are installing from source, you will need to install the Command Line Tools:

xcode-select --install

You can then install the other dependencies by running:

brew install autoconf autoconf-archive automake libtool \
erlang icu4c spidermonkey pkg-config

You will need Homebrew installed to use the brew command.

Some versions of Mac OS X ship a problematic OpenSSL library. If you’re experiencing troubles with CouchDB
crashing intermittently with a segmentation fault or a bus error, you will need to install your own version of
OpenSSL. See the wiki, mentioned above, for more information.

See also:

¢ Homebrew

FreeBSD

FreeBSD requires the use of GNU Make. Where make is specified in this documentation, substitute gmake.

You can install this by running:

pkg install gmake

5.1.4 Installing

Once you have satisfied the dependencies you should run:

./configure

If you wish to customize the installation, pass --help to this script.

If everything was successful you should see the following message:

You have configured Apache CouchDB, time to relax.

Relax.
To build CouchDB you should run:

make release

Try gmake if make is giving you any problems.

If include paths or other compiler options must be specified, they can be passed to rebar, which compiles
CouchDB, with the ERL_CFLAGS environment variable. Likewise, options may be passed to the linker with
the ERL_LDFLAGS environment variable:

make release ERL_CFLAGS="-I/usr/local/include/js -I/usr/local/lib/erlang/usr/include"

If everything was successful you should see the following message:

. done
You can now copy the rel/couchdb directory anywhere on your system.
Start CouchDB with ./bin/couchdb from within that directory.

5.1. Installation on Unix-like systems 179

http://mxcl.github.com/homebrew/

Apache CouchDB®, Release 3.3.3

Relax.

Note: a fully-fledged ./configure with the usual GNU Autotools options for package managers and a corre-
sponding make install are in development, but not part of the 2.0.0 release.

5.1.5 User Registration and Security

For OS X, in the steps below, substitute /Users/couchdb for /home/couchdb.
You should create a special couchdb user for CouchDB.

On many Unix-like systems you can run:

adduser --system \
--shell /bin/bash \
--group --gecos \
"CouchDB Administrator" couchdb

On Mac OS X you can use the Workgroup Manager to create users up to version 10.9, and dscl or sysadminctl
after version 10.9. Search Apple’s support site to find the documentation appropriate for your system. As of recent
versions of OS X, this functionality is also included in Server.app, available through the App Store only as part of
OS X Server.

You must make sure that the user has a working POSIX shell and a writable home directory.
You can test this by:
* Trying to log in as the couchdb user
* Running pwd and checking the present working directory
As a recommendation, copy the rel/couchdb directory into /home/couchdb or /Users/couchdb.

Ex: copy the built couchdb release to the new user’s home directory:

cp -R /path/to/couchdb/rel/couchdb /home/couchdb

Change the ownership of the CouchDB directories by running:

chown -R couchdb:couchdb /home/couchdb

Change the permission of the CouchDB directories by running:

find /home/couchdb -type d -exec chmod 0770 {} \;

Update the permissions for your ini files:

chmod 0644 /home/couchdb/etc/*

5.1.6 First Run

Note: Be sure to create an admin user before trying to start CouchDB!

You can start the CouchDB server by running:

sudo -i -u couchdb /home/couchdb/bin/couchdb

This uses the sudo command to run the couchdb command as the couchdb user.

When CouchDB starts it should eventually display following messages:

180 Chapter 5. Installation

Apache CouchDB®, Release 3.3.3

{database_does_not_exist, [{mem3_shards,load_shards_from_db,"_users" ...

Don’t be afraid, we will fix this in a moment.

To check that everything has worked, point your web browser to:

http://127.0.0.1:5984/_utils/index.html

From here you should verify your installation by pointing your web browser to:

http://localhost:5984/_utils/index.html#verifyinstall

Your installation is not complete. Be sure to complete the Serup steps for a single node or clustered installa-
tion.

5.1.7 Running as a Daemon

CouchDB no longer ships with any daemonization scripts.
The CouchDB team recommends runit to run CouchDB persistently and reliably. According to official site:

runit is a cross-platform Unix init scheme with service supervision, a replacement for sysvinit, and
other init schemes. It runs on GNU/Linux, *BSD, MacOSX, Solaris, and can easily be adapted to
other Unix operating systems.

Configuration of runit is straightforward; if you have questions, contact the CouchDB user mailing list or IRC-
channel #couchdb in FreeNode network.

Let’s consider configuring runit on Ubuntu 18.04. The following steps should be considered only as an exam-
ple. Details will vary by operating system and distribution. Check your system’s package management tools for
specifics.

Install runit:

sudo apt-get install runit

Create a directory where logs will be written:

sudo mkdir /var/log/couchdb
sudo chown couchdb:couchdb /var/log/couchdb

Create directories that will contain runit configuration for CouchDB:

sudo mkdir /etc/sv/couchdb
sudo mkdir /etc/sv/couchdb/log

Create /etc/sv/couchdb/log/run script:

#!/bin/sh
exec svlogd -tt /var/log/couchdb

Basically it determines where and how exactly logs will be written. See man svlogd for more details.

Create /etc/sv/couchdb/run:

#!/bin/sh

export HOME=/home/couchdb

exec 2>&1

exec chpst -u couchdb /home/couchdb/bin/couchdb

5.1. Installation on Unix-like systems 181

http://smarden.org/runit/
http://mail-archives.apache.org/mod_mbox/couchdb-user/
http://webchat.freenode.net/?channels=#couchdb
http://webchat.freenode.net/?channels=#couchdb

Apache CouchDB®, Release 3.3.3

This script determines how exactly CouchDB will be launched. Feel free to add any additional arguments and
environment variables here if necessary.

Make scripts executable:

sudo chmod u+x /etc/sv/couchdb/log/run
sudo chmod u+x /etc/sv/couchdb/run

Then run:

sudo In -s /etc/sv/couchdb/ /etc/service/couchdb

In a few seconds runit will discover a new symlink and start CouchDB. You can control CouchDB service like this:

sudo sv status couchdb
sudo sv stop couchdb
sudo sv start couchdb

Naturally now CouchDB will start automatically shortly after system starts.

You can also configure systemd, launchd or SysV-init daemons to launch CouchDB and keep it running using
standard configuration files. Consult your system documentation for more information.

5.2 Installation on Windows

There are two ways to install CouchDB on Windows.

5.2.1 Installation from binaries

This is the simplest way to go.

Warning: Windows 8, 8.1, and 10 require the .NET Framework v3.5 to be installed.

1. Get the latest Windows binaries from the CouchDB web site. Old releases are available at archive.

2. Follow the installation wizard steps. Be sure to install CouchDB to a path with no spaces, such as C:\
CouchDB.

3. Your installation is not complete. Be sure to complete the Serup steps for a single node or clustered
installation.

4. Open up Fauxton

5. It’s time to Relax!

Note: In some cases you might been asked to reboot Windows to complete installation process, because of using
on different Microsoft Visual C++ runtimes by CouchDB.

Note: Upgrading note

It’s recommended to uninstall previous CouchDB version before upgrading, especially if the new one is built against
different Erlang release. The reason is simple: there may be leftover libraries with alternative or incompatible
versions from old Erlang release that may create conflicts, errors and weird crashes.

In this case, make sure you backup of your local.ini config and CouchDB database/index files.

182 Chapter 5. Installation

https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10
http://couchdb.apache.org/#download
http://couchdb.apache.org/
http://archive.apache.org/dist/couchdb/binary/win/
http://localhost:5984/_utils

Apache CouchDB®, Release 3.3.3

Silent Install

The Windows installer supports silent installs. Here are some sample commands, supporting the new features of
the 3.0 installer.

Install CouchDB without a service, but with an admin user:password of admin:hunter2:

msiexec /i apache-couchdb-3.0.0.msi /quiet ADMINUSER=admin ADMINPASSWORD=hunter2 /
—norestart

The same as above, but also install and launch CouchDB as a service:

msiexec /i apache-couchdb-3.0.0.msi /quiet INSTALLSERVICE=1 ADMINUSER=admin..
— ADMINPASSWORD=hunter2 /norestart

Unattended uninstall of CouchDB to target directory D:CouchDB:

msiexec /x apache-couchdb-3.0.0.msi INSTALLSERVICE=1 APPLICATIONFOLDER="D:\CouchDB".
—~ADMINUSER=admin ADMINPASSWORD=hunter2 /quiet /norestart

Unattended uninstall if the installer file is unavailable:

msiexec /x {4CD776EQ-FADF-4831-AF56-E80E39F34CFC} /quiet /norestart

Add /1* log.txt to any of the above to generate a useful logfile for debugging.

5.2.2 Installation from sources

See also:

Glazier: Automate building of CouchDB from source on Windows

5.3 Installation on macOS

5.3.1 Installation using the Apache CouchDB native application
The easiest way to run CouchDB on macOS is through the native macOS application. Just follow the below
instructions:

1. Download Apache CouchDB for macOS. Old releases are available at archive.

2. Double click on the Zip file

3. Drag and drop the Apache CouchDB.app into Applications folder
That’s all, now CouchDB is installed on your Mac:

1. Run Apache CouchDB application

2. Open up Fauxton, the CouchDB admin interface

3. Verity the install by clicking on Verify, then Verify Installation.

4

. Your installation is not complete. Be sure to complete the Serup steps for a single node or clustered
installation.

5. Time to Relax!

5.3. Installation on macOS 183

https://github.com/apache/couchdb-glazier
http://couchdb.apache.org/#download
http://archive.apache.org/dist/couchdb/binary/mac/
http://localhost:5984/_utils

Apache CouchDB®, Release 3.3.3

5.3.2 Installation with Homebrew

CouchDB can be installed via Homebrew. Fetch the newest version of Homebrew and all formulae and install
CouchDB with the following commands:

brew update
brew install couchdb

5.3.3 Installation from source

Installation on macOS is possible from source. Download the source tarball, extract it, and follow the instructions
in the INSTALL.Unix.md file.

Running as a Daemon

CouchDB itself no longer ships with any daemonization scripts.

The CouchDB team recommends runit to run CouchDB persistently and reliably. Configuration of runit is straight-
forward; if you have questions, reach out to the CouchDB user mailing list.

Naturally, you can configure launchd or other init daemons to launch CouchDB and keep it running using standard
configuration files.

Consult your system documentation for more information.

5.4 Installation on FreeBSD

5.4.1 Installation from ports

cd /usr/ports/databases/couchdb
make install clean

This will install CouchDB from the ports collection.

Note: Be sure to create an admin user before starting CouchDB for the first time!

Start script

The following options for /etc/rc.conf or /etc/rc.conf.local are supported by the start script (defaults
shown):

couchdb_enable="NO"
couchdb_enablelogs="YES"
couchdb_user="couchdb"

After enabling the couchdb rc service use the following command to start CouchDB:

/usr/local/etc/rc.d/couchdb start

This script responds to the arguments start, stop, status, rcvar etc..
The start script will also use settings from the following config files:

e /usr/local/etc/couchdb/default.ini

184 Chapter 5. Installation

http://brew.sh/
http://couchdb.apache.org/#download
http://smarden.org/runit/

Apache CouchDB®, Release 3.3.3

e /usr/local/etc/couchdb/local.ini

Administrators should use default.ini as reference and only modify the local.ini file.

Post install
Your installation is not complete. Be sure to complete the Serup steps for a single node or clustered installa-
tion.

In case the install script fails to install a non-interactive user “couchdb” to be used for the database, the user needs
to be created manually:

I used the pw command to add a user “couchdb” in group “couchdb’:

pw user add couchdb

pw user mod couchdb -c 'CouchDB, time to relax' -s /usr/sbin/nologin -d /var/lib/
—couchdb

pw group add couchdb

The user is added to /etc/passwd and should look similar to the following:

shell# grep couchdb /etc/passwd
couchdb:*:1013:1013:Couchdb, time to relax:/var/lib/couchdb/:/usr/sbin/nologin

To change any of these settings, please refrain from editing /etc/passwd and instead use pw user mod ... or
vipw. Make sure that the user has no shell, but instead uses /usr/sbin/nologin. The ‘*’ in the second field
means that this user can not login via password authorization. For details use man 5 passwd.

5.5 Installation via Docker

Apache CouchDB provides ‘convenience binary’ Docker images through Docker Hub at apache/couchdb. This
is our upstream release; it is usually mirrored downstream at Docker’s top-level couchdb as well.

At least these tags are always available on the image:
* latest - always the latest
* 3: always the latest 3.x version
e 2: always the latest 2.x version
* 1,1.7,1.7.2: CouchDB 1.7.2 (convenience only; no longer supported)

e 1-couchperuser, 1.7-couchperuser, 1.7.2-couchperuser: CouchDB 1.7.2 with couchperuser plu-
gin (convenience only; no longer supported)

These images expose CouchDB on port 5984 of the container, run everything as user couchdb (uid 5984), and
support use of a Docker volume for data at /opt/couchdb/data.

Your installation is not complete. Be sure to complete the Serup steps for a single node or clustered installa-
tion.

Further details on the Docker configuration are available in our couchdb-docker git repository.

5.5. Installation via Docker 185

http://linux.die.net/man/5/passwd
https://github.com/apache/couchdb-docker

Apache CouchDB®, Release 3.3.3

5.6 Installation via Snap

Apache CouchDB provides ‘convenience binary’ Snap builds through the Ubuntu snapcraft repository under the
name couchdb. Only snaps built from official stable CouchDB releases (2.0, 2.1, etc.) are available through
this channel. There are separate snap channels for each major release stream, e.g. 2.%, 3.Xx, as well as a latest
stream.

After installing snapd, the CouchDB snap can be installed via:

$ sudo snap install couchdb

CouchDB will be installed at /snap/couchdb. Data will be stored at /var/snap/couchdb/.

Please note that all other file system paths are relative to the snap “chroot” instead of the system root.
In addition, the exact path depends on your system. For example, when you normally want to reference
/opt/couchdb/etc/local.ini, under snap, this could live at /snap/couchdb/5/opt/couchdb/etc/local.ini.

Your installation is not complete. Be sure to complete the Serup steps for a single node or clustered installa-
tion.

Further details on the snap build process are available in our couchdb-pkg git repository.

5.7 Installation on Kubernetes

Apache CouchDB provides a Helm chart to enable deployment to Kubernetes.

To install the chart with the release name my-release:

helm repo add couchdb https://apache.github.io/couchdb-helm
helm repo update

helm install --name my-release couchdb/couchdb

Further details on the configuration options are available in the Helm chart readme.

5.8 Search Plugin Installation

New in version 3.0.

CouchDB can build and query full-text search indexes using an external Java service that embeds Apache Lucene.
Typically, this service is installed on the same host as CouchDB and communicates with it over the loopback
network.

The search plugin is runtime-compatible with Java JDKs 6, 7 and 8. Building a release from source requires JDK
6. It will not work with any newer version of Java. Sorry about that.

186 Chapter 5. Installation

https://snapcraft.io/docs/core/install
https://github.com/apache/couchdb-pkg
https://hub.helm.sh/charts/couchdb/couchdb
https://hub.helm.sh/charts/couchdb/couchdb
http://lucene.apache.org

Apache CouchDB®, Release 3.3.3

5.8.1 Installation of Binary Packages

Binary packages that bundle all the necessary dependencies of the search plugin are available on GitHub. The files
in each release should be unpacked into a directory on the Java classpath. If you do not have a classpath already
set, or you wish to explicitly set the classpath location for Clouseau, then add the line:

-classpath '/path/to/clouseau/*’

to the server command below. If clouseau is installed in /opt/clouseau the line would be:

-classpath '/opt/clouseau/*'

The service expects to find a couple of configuration files conventionally called clouseau.ini and log4j.
properties with the following content:

clouseau.ini:

[clouseau]

; the name of the Erlang node created by the service, leave this unchanged
name=clouseau@127.0.0.1

; set this to the same distributed Erlang cookie used by the CouchDB nodes
cookie=monster

; the path where you would like to store the search index files
dir=/path/to/index/storage

; the number of search indexes that can be open simultaneously
max_indexes_open=500

logdj.properties:

log4j.rootLogger=debug, CONSOLE
log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
log4j.appender.CONSOLE. layout.ConversionPattern=%d{IS08601} %c [%p] %m%n

Once these files are in place the service can be started with an invocation like the following:

java -server \
-Xmx2G \
-Dsun.net.inetaddr.ttl1=30 \
-Dsun.net.inetaddr.negative.ttl=30 \
-Dlog4j.configuration=file:/path/to/log4j.properties \
-XX:0nOutOfMemoryError="kill -9 %p" \
-XX:+UseConcMarkSweepGC \
-XX:+CMSParallelRemarkEnabled \
com.cloudant.clouseau.Main \
/path/to/clouseau.ini

5.8. Search Plugin Installation 187

https://github.com/cloudant-labs/clouseau/releases

Apache CouchDB®, Release 3.3.3

5.8.2 Chef

The CouchDB cookbook can build the search plugin from source and install it on a server alongside CouchDB.

5.8.3 Kubernetes

Users running CouchDB on Kubernetes via the Helm chart can add the search service to each CouchDB Pod by
setting enableSearch: true in the chart values.

5.8.4 Additional Details

The Search User Guide provides detailed information on creating and querying full-text indexes using this plugin.

The source code for the plugin and additional configuration documentation is available on GitHub at https://github.
com/cloudant-labs/clouseau.

5.9 Upgrading from prior CouchDB releases

5.9.1 Important Notes

* Always back up your data/ and etc/ directories prior to upgrading CouchDB.

* We recommend that you overwrite your etc/default.ini file with the version provided by the new release.
New defaults sometimes contain mandatory changes to enable default functionality. Always places your
customizations in etc/local.ini or any etc/local.d/*.1ini file.

5.9.2 Upgrading from CouchDB 2.x

If you are coming from a prior release of CouchDB 2.x, upgrading is simple.

Standalone (single) node upgrades

If you are running a standalone (single) CouchDB node:
1. Plan for downtime.
2. Backup everything.

3. Check for new recommended settings in the shipped etc/local.ini file, and merge any changes desired
into your own local settings file(s).

4. Stop CouchDB.
5. Upgrade CouchDB in place.

6. Be sure to create an admin user if you do not have one. CouchDB 3.0+ require an admin user to start (the
admin party has ended).

7. Start CouchDB.

8. Relax! You're done.

188 Chapter 5. Installation

https://supermarket.chef.io/cookbooks/couchdb
https://github.com/apache/couchdb-helm
https://github.com/cloudant-labs/clouseau
https://github.com/cloudant-labs/clouseau

Apache CouchDB®, Release 3.3.3

Cluster upgrades

CouchDB 2.x and 3.x are explicitly designed to allow “mixed clusters” during the upgrade process. This allows
you to perform a rolling restart across a cluster, upgrading one node at a time, for a zero downtime upgrade. The
process is also entirely scriptable within your configuration management tool of choice.

We’re proud of this feature, and you should be, too!
If you are running a CouchDB cluster:
1. Backup everything.

2. Check for new recommended settings in the shipped etc/local.ini file, and merge any changes desired
into your own local settings file(s), staging these changes to occur as you upgrade the node.

Stop CouchDB on a single node.
Upgrade that CouchDB install in place.
Start CouchDB.

A

Double-check that the node has re-joined the cluster through the /_membership endpoint. If your load bal-
ancer has health check functionality driven by the /_up endpoint, check whether it thinks the node is healthy
as well.

7. Repeat the last 4 steps on the remaining nodes in the cluster.

8. Relax! You're done.

5.9.3 Upgrading from CouchDB 1.x

To upgrade from CouchDB 1.x, first upgrade to a version of CouchDB 2.x. You will need to convert all databases
to CouchDB 2.x format first; see the Upgrade Notes there for instructions. Then, upgrade to CouchDB 3.x.

5.10 Troubleshooting an Installation

5.10.1 First Install

If your CouchDB doesn’t start after you’ve just installed, check the following things:

¢ On UNIX-like systems, this is usually this is a permissions issue. Ensure that you’ve followed the User Reg-
istration and Security chown/chmod commands. This problem is indicated by the presence of the keyword
eacces somewhere in the error output from CouchDB itself.

* Some Linux distributions split up Erlang into multiple packages. For your distribution, check that you really
installed all the required Erlang modules. This varies from platform to platform, so you’ll just have to work it
out for yourself. For example, on recent versions of Ubuntu/Debian, the erlang package includes all Erlang
modules.

* Confirm that Erlang itself starts up with crypto (SSL) support:

what version of erlang are you running? Ensure it is supported

erl -noshell -eval 'io:put_chars(erlang:system_info(otp_release)).' -s erlang halt
are the erlang crypto (SSL) libraries working?

erl -noshell -eval 'case application:load(crypto) of ok -> io:put_chars("yay_crypto\n
") 3 _ > exit(no_crypto) end.' -s init stop

* Next, identify where your Erlang CouchDB libraries are installed. This will typically be the lib/ subdirectory
of the release that you have installed.

 Use this to start up Erlang with the CouchDB libraries in its path:

5.10. Troubleshooting an Installation 189

Apache CouchDB®, Release 3.3.3

erl -env ERL_LIBS $ERL_LIBS:/path/to/couchdb/lib -couch_ini -s crypto

¢ In that Erlang shell, let’s check that the key libraries are running. The %% lines are comments, so you can
skip them:

%% test SSL support. If this fails, ensure you have the OTP erlang-crypto library.
—installed
crypto:md5_init().

%% test Snappy compression. If this fails, check your CouchDB configure script output.
—or alternatively

%% if your distro comes with erlang-snappy make sure you're using only the CouchDB.
—supplied version

snappy : compress (" gogogogogogogogogogogogogogo') .

%% test the CouchDB JSON encoder. CouchDB uses different encoders in each release,..
—this one matches

%% what is used in 2.0.x.

jiffy:decode(jiffy:encode(<<"[1,2,3,4,5]">>)).

%% this is how you quit the erlang shell.
qa0.

* The output should resemble this, or an error will be thrown:

Erlang/OTP 17 [erts-6.2] [source] [64-bit] [smp:2:2] [async-threads:10] [kernel-
—poll:false]

Eshell V6.2 (abort with AG)

1> crypto:md5_init().

<<1,35,69,103,137,171,205,239,254,220,186,152,118,84,50,
16,0,0,0,0,0,0,0,0,0,0,0,0,0,...>>

2> snappy:compress (''gogogogogogogogogogogogogogo") .

{ok,<<28,4,103,111,102,2,0>>}

3> jiffy:decode(jiffy:encode(<<"[1,2,3,4,5]1">>)).

<<"[1,2,3,4,5]">>

4> q0.

* At this point the only remaining dependency is your system’s Unicode support library, ICU, and the Spider-
monkey Javascript VM from Mozilla. Make sure that your LD_LIBRARY_PATH or equivalent for non-Linux
systems (DYLD_LIBRARY_PATH on macOS) makes these available to CouchDB. Linux example running as
normal user:

LD_LIBRARY_PATH=/usr/local/lib:/usr/local/spidermonkey/lib couchdb

Linux example running as couchdb user:

echo LD_LIBRARY_PATH=/usr/local/lib:/usr/local/spidermonkey/lib couchdb | sudo -u.
—couchdb sh

* If you receive an error message including the key word eaddrinuse, such as this:

Failure to start Mochiweb: eaddrinuse

edit your "~ “etc/default.ini’’ or "‘etc/local.ini’" file and change the
""[chttpd] port = 5984 line to an available port.

* If you receive an error including the string:

190 Chapter 5. Installation

Apache CouchDB®, Release 3.3.3

. 0S Process Error ... {os_process_error,{exit_status,127}}

then it is likely your SpiderMonkey JavaScript VM installation is not correct. Please recheck your build dependen-
cies and try again.

* If you receive an error including the string:

. 0S Process Error ... {os_process_error,{exit_status,139}}

this is caused by the fact that SELinux blocks access to certain areas of the file system. You must re-configure
SELinux, or you can fully disable SELinux using the command:

setenforce 0

* If you are still not able to get CouchDB to start at this point, keep reading.

5.10.2 Quick Build

Having problems getting CouchDB to run for the first time? Follow this simple procedure and report back to the
user mailing list or IRC with the output of each step. Please put the output of these steps into a paste service (such
as https://paste.ee/) rather than including the output of your entire run in IRC or the mailing list directly.

1. Note down the name and version of your operating system and your processor architecture.
2. Note down the installed versions of CouchDB’s dependencies.
3. Follow the checkout instructions to get a fresh copy of CouchDB’s trunk.

4. Configure from the couchdb directory:

./configure

5. Build the release:

make release

6. Run the couchdb command and log the output:

cd rel/couchdb
bin/couchdb

7. Use your system’s kernel trace tool and log the output of the above command.

a) For example, linux systems should use strace:

strace bin/couchdb 2> strace.out

8. Report back to the mailing list (or IRC) with the output of each step.

5.10.3 Upgrading

Are you upgrading from CouchDB 1.x? Install CouchDB into a fresh directory. CouchDB’s directory layout has
changed and may be confused by libraries present from previous releases.

5.10. Troubleshooting an Installation 191

https://paste.ee/

Apache CouchDB®, Release 3.3.3

5.10.4 Runtime Errors

Erlang stack trace contains system_limit, open_port, or emfile

Modern Erlang has a default limit of 65536 ports (8196 on Windows), where each open file handle, tcp connection,
and linked-in driver uses one port. OSes have different soft and hard limits on the number of open handles per
process, often as low as 1024 or 4096 files. You’ve probably exceeded this.

There are two settings that need changing to increase this value. Consult your OS documentation for how to increase
the limit for your process. Under Linux and systemd, this setting can be adjusted via systemctl edit couchdb
and adding the lines:

[Service]
LimitNOFILE=65536

to the file in the editor.

To increase this value higher than 65536, you must also add the Erlang +Q parameter to your etc/vm. args file by
adding the line:

+Q 102400

The old ERL_MAX_PORTS environment variable is ignored by the version of Erlang supplied with CouchDB.

Lots of memory being used on startup

Is your CouchDB using a lot of memory (several hundred MB) on startup? This one seems to especially affect
Dreambhost installs. It’s really an issue with the Erlang VM pre-allocating data structures when ulimit is very large
or unlimited. A detailed discussion can be found on the erlang-questions list, but the short answer is that you should
decrease ulimit -n or lower the vm.args parameter +Q to something reasonable like 1024.

function raised exception (Cannot encode ‘undefined’ value as JSON)

If you see this in the CouchDB error logs, the JavaScript code you are using for either a map or reduce function is
referencing an object member that is not defined in at least one document in your database. Consider this document:

{
"_id":"XyYz123",
"_rev":"1BB2BB",
"field":"value"

and this map function:

function(doc) {
emit(doc.name, doc.address);

}

This will fail on the above document, as it does not contain a name or address member. Instead, use guarding to
make sure the function only accesses members when they exist in a document:

function(doc) {
if(doc.name && doc.address) {
emit(doc.name, doc.address);
}
}

192 Chapter 5. Installation

Apache CouchDB®, Release 3.3.3

While the above guard will work in most cases, it’s worth bearing JavaScript’s understanding of ‘false’ values in
mind. Testing against a property with a value of 0 (zero), ' ' (empty String), false or null will return false. If
this is undesired, a guard of the form if (doc.foo !== undefined) should do the trick.

This error can also be caused if a reduce function does not return a value. For example, this reduce function will
cause an error:

function(key, values) {
sum(values);

¥

The function needs to return a value:

function(key, values) {
return sum(values);

}

erlang stack trace contains bad_utf8_character_code
CouchDB 1.1.1 and later contain stricter handling of UTFS8 encoding. If you are replicating from older versions to
newer versions, then this error may occur during replication.

A number of work-arounds exist; the simplest is to do an in-place upgrade of the relevant CouchDB and then
compact prior to replicating.

Alternatively, if the number of documents impacted is small, use filtered replication to exclude only those docu-
ments.

FIPS mode

Operating systems can be configured to disallow the use of OpenSSL MDS5 hash functions in order to prevent use
of MDS5 for cryptographic purposes. CouchDB makes use of MDS5 hashes for verifying the integrity of data (and
not for cryptography) and will not run without the ability to use MD5 hashes.

The message below indicates that the operating system is running in “FIPS mode,” which, among other restrictions,
does not allow the use of OpenSSL’s MD5 functions:

md5_dgst.c(82): OpenSSL internal error, assertion failed: Digest MD5 forbidden in.
—FIPS mode!

[os_mon] memory supervisor port (memsup): Erlang has closed

[os_mon] cpu supervisor port (cpu_sup): Erlang has closed

Aborted

A workaround for this is provided with the --erlang-md5 compile flag. Use of the flag results in CouchDB sub-
stituting the OpenSSL MD5 function calls with equivalent calls to Erlang’s built-in library erlang:md5. NOTE:
there may be a performance penalty associated with this workaround.

Because CouchDB does not make use of MDS5 hashes for cryptographic purposes, this workaround does not defeat
the purpose of “FIPS mode,” provided that the system owner is aware of and consents to its use.

5.10. Troubleshooting an Installation 193

Apache CouchDB®, Release 3.3.3

Debugging startup

If you’ve compiled from scratch and are having problems getting CouchDB to even start up, you may want to see
more detail. Start by enabling logging at the debug level:

[1og]
level = debug

You can then pass the -init_debug +W i +v +V -emu_args flags in the ERL_FLAGS environment variable to
turn on additional debugging information that CouchDB developers can use to help you.

Then, reach out to the CouchDB development team using the links provided on the CouchDB home page for
assistance.

5.10.5 macOS Known Issues

undefined error, exit_status 134
Sometimes the Verify Installation fails with an undefined error. This could be due to a missing dependency
with Mac. In the logs, you will find couchdb exit_status, 134.

Installing the missing nspr via brew install nspr resolves the issue. (see: https://github.com/apache/
couchdb/issues/979)

194 Chapter 5. Installation

https://couchdb.apache.org/
https://github.com/apache/couchdb/issues/979
https://github.com/apache/couchdb/issues/979

CHAPTER
SIX

SETUP

CouchDB 2.x can be deployed in either a single-node or a clustered configuration. This section covers the first-time
setup steps required for each of these configurations.

6.1 Single Node Setup

Many users simply need a single-node CouchDB 2.x installation. Operationally, it is roughly equivalent to the
CouchDB 1.x series. Note that a single-node setup obviously doesn’t take any advantage of the new scaling and
fault-tolerance features in CouchDB 2.x.

After installation and initial startup, visit Fauxton at http://127.0.0.1:5984/_utils#setup. You will be
asked to set up CouchDB as a single-node instance or set up a cluster. When you click “Single-Node-Setup”, you
will get asked for an admin username and password. Choose them well and remember them.

You can also bind CouchDB to a public address, so it is accessible within your LAN or the public, if you are doing
this on a public VM. Or, you can keep the installation private by binding only to 127.0.0.1 (localhost). Binding to
0.0.0.0 will bind to all addresses. The wizard then configures your admin username and password and creates the
three system databases _users, _replicator and _global_changes for you.

Another option is to set the configuration parameter [couchdb] single_node=true in your local.ini file.
When doing this, CouchDB will create the system database for you on restart.

Alternatively, if you don’t want to use the Setup Wizard or set that value, and run 3.x as a single node with a server
administrator already configured via config file, make sure to create the three system databases manually on startup:

curl -X PUT http://127.0.0.1:5984/_users
curl -X PUT http://127.0.0.1:5984/_replicator

curl -X PUT http://127.0.0.1:5984/_global_changes

Note that the last of these is not necessary if you do not expect to be using the global changes feed. Feel free to
delete this database if you have created it, it has grown in size, and you do not need the function (and do not wish
to waste system resources on compacting it regularly.)

6.2 Cluster Set Up

This section describes everything you need to know to prepare, install, and set up your first CouchDB 2.x/3.x
cluster.

195

Apache CouchDB®, Release 3.3.3

6.2.1 Ports and Firewalls

CouchDB uses the following ports:

Port Number Pro- | Recommended binding Usage
tocol

5984 tcp As desired, by default localhost Standard clustered port for all
HTTP API requests

4369 tcp localhost for single node installs. Pri- | Erlang port mapper daemon (epmd)

vate interface if clustered

Random above 1024 | tcp Private interface Communication with other

(see below) CouchDB nodes in the clus-
ter

CouchDB in clustered mode uses the port 5984, just as in a standalone configuration. Port 5986, previously used
in CouchDB 2.x, has been removed in CouchDB 3.x. All endpoints previously accessible at that port are now
available under the /_node/{node-name}/. .. hierarchy via the primary 5984 port.

CouchDB uses Erlang-native clustering functionality to achieve a clustered installation. Erlang uses TCP port 4369
(EPMD) to find other nodes, so all servers must be able to speak to each other on this port. In an Erlang cluster,
all nodes are connected to all other nodes, in a mesh network configuration.

Every Erlang application running on that machine (such as CouchDB) then uses automatically assigned ports for
communication with other nodes. Yes, this means random ports. This will obviously not work with a firewall, but
it is possible to force an Erlang application to use a specific port range.

This documentation will use the range TCP 9100-9200, but this range is unnecessarily broad. If you only have a
single Erlang application running on a machine, the range can be limited to a single port: 9100-9100, since the
ports erlang assigns are for inbound connections only. Three CouchDB nodes running on a single machine, as in
a development cluster scenario, would need three ports in this range.

Warning: If you expose the distribution port to the Internet or any other untrusted network, then the only
thing protecting you is the Erlang cookie.

6.2.2 Configure and Test the Communication with Erlang

Make CouchDB use correct IP[FQDN and the open ports

In file etc/vm.args change the line -name couchdb@127.0.0.1 to -name
couchdb@<reachable-ip-address|fully-qualified-domain-name> which defines the name of the
node. Each node must have an identifier that allows remote systems to talk to it. The node name is of the form
<name>@<reachable-ip-address|fully-qualified-domain-name>.

The name portion can be couchdb on all nodes, unless you are running more than 1 CouchDB node on the same
server with the same IP address or domain name. In that case, we recommend names of couchdbl, couchdb2,
etc.

The second portion of the node name must be an identifier by which other nodes can access this node — either
the node’s fully qualified domain name (FQDN) or the node’s IP address. The FQDN is preferred so that you can
renumber the node’s IP address without disruption to the cluster. (This is common in cloud-hosted environments.)

Warning: Tricks with /etc/hosts and libresolv don’t work with Erlang. Either properly set up DNS and
use fully-qualified domain names, or use IP addresses. DNS and FQDNs are preferred.

Changing the name later is somewhat cumbersome (i.e. moving shards), which is why you will want to set it
once and not have to change it.

196 Chapter 6. Setup

http://erlang.org/doc/reference_manual/distributed.html

Apache CouchDB®, Release 3.3.3

Open etc/vm.args, on all nodes, and add -kernel inet_dist_listen_min 9100 and -kernel
inet_dist_listen_max 9200 like below:

-name ...
-setcookie ...

-kernel inet_dist_listen_min 9100
-kernel inet_dist_listen_max 9200

Again, a small range is fine, down to a single port (set both to 9100) if you only ever run a single CouchDB node
on each machine.

Confirming connectivity between nodes

For this test, you need 2 servers with working hostnames. Let us call them serverl.test.com and server2.test.com.
They reside at 192.168.0.1 and 192.168.0. 2, respectively.

On serverl.test.com:

erl -name bus@192.168.0.1 -setcookie 'brumbrum' -kernel inet_dist_listen_min 9100 -
—.kernel inet_dist_listen_max 9200

Then on server2.test.com:

erl -name car@192.168.0.2 -setcookie 'brumbrum' -kernel inet_dist_listen_min 9100 -
—kernel inet_dist_listen_max 9200

An explanation to the commands:
* erl the Erlang shell.
e -name bus@192.168.0.1 the name of the Erlang node and its IP address or FQDN.
e -setcookie 'brumbrum' the “password” used when nodes connect to each other.
e -kernel inet_dist_listen_min 9100 the lowest port in the range.
¢ -kernel inet_dist_listen_max 9200 the highest port in the range.

This gives us 2 Erlang shells. shelll on serverl, shell2 on server2. Time to connect them. Enter the following,
being sure to end the line with a period (.):

In shelll:

net_kernel:connect_node('car@192.168.0.2").

This will connect to the node called car on the server called 192.168.0.2.

If that returns true, then you have an Erlang cluster, and the firewalls are open. This means that 2 CouchDB nodes
on these two servers will be able to communicate with each other successfully. If you get false or nothing at all,
then you have a problem with the firewall, DNS, or your settings. Try again.

If you’re concerned about firewall issues, or having trouble connecting all nodes of your cluster later on, repeat the
above test between all pairs of servers to confirm connectivity and system configuration is correct.

6.2. Cluster Set Up 197

Apache CouchDB®, Release 3.3.3

6.2.3 Preparing CouchDB nodes to be joined into a cluster

Before you can add nodes to form a cluster, you must have them listening on an IP address accessible from the
other nodes in the cluster. You should also ensure that a few critical settings are identical across all nodes before
joining them.

The settings we recommend you set now, before joining the nodes into a cluster, are:
1. etc/vm.args settings as described in the previous two sections
2. At least one server administrator user (and password)
3. Bind the node’s clustered interface (port 5984) to a reachable IP address
4

. A consistent UUID. The UUID is used in identifying the cluster when replicating. If this value is not consistent
across all nodes in the cluster, replications may be forced to rewind the changes feed to zero, leading to
excessive memory, CPU and network use.

5. A consistent httpd secret. The secret is used in calculating and evaluating cookie and proxy authentica-
tion, and should be set consistently to avoid unnecessary repeated session cookie requests.

As of CouchDB 3.0, steps 4 and 5 above are automatically performed for you when using the setup API endpoints
described below.

If you use a configuration management tool, such as Chef, Ansible, Puppet, etc., then you can place these settings
in a .ini file and distribute them to all nodes ahead of time. Be sure to pre-encrypt the password (cutting and
pasting from a test instance is easiest) if you use this route to avoid CouchDB rewriting the file.

If you do not use configuration management, or are just experimenting with CouchDB for the first time, use these
commands once per server to perform steps 2-4 above. Be sure to change the password to something secure,
and again, use the same password on all nodes. You may have to run these commands locally on each node; if so,
replace <server-IP|FQDN> below with 127.0.0.1.

First, get two UUIDs to use later on. Be sure to use the SAME UUIDs on all nodes.
curl http://<server-IP|FQDN>:5984/_uuids?count=2

CouchDB will respond with something like:

{"uuids": ["60c9e8234dfba3e2fdab04bf92001142", "60c9e8234dfba3e2fdab®4bf92001cc2"]}
Copy the provided UUIDs into your clipboard or a text editor for later use.

Use the first UUID as the cluster UUID.

Use the second UUID as the cluster shared http secret.

Create the admin user and password:
curl -X PUT http://<server-IP|FQDN>:5984/_node/_local/_config/admins/admin -d '
—"password"'

Now, bind the clustered interface to all IP addresses available on this machine
curl -X PUT http://<server-IP|FQDN>:5984/_node/_local/_config/chttpd/bind_address -d '
-"0.0.0.0""

If not using the setup wizard / API endpoint, the following 2 steps are required:

Set the UUID of the node to the first UUID you previously obtained:

curl -X PUT http://<server-IP|FQDN>:5984/_node/_local/_config/couchdb/uuid -d '"FIRST-
—UUID-GOES-HERE"'

Finally, set the shared http secret for cookie creation to the second UUID:
curl -X PUT http://<server-IP|FQDN>:5984/_node/_local/_config/chttpd_auth/secret -d '
—"SECOND-UUID-GOES-HERE""'

198 Chapter 6. Setup

Apache CouchDB®, Release 3.3.3

6.2.4 The Cluster Setup Wizard

CouchDB 2.x/3.x comes with a convenient Cluster Setup Wizard as part of the Fauxton web administration inter-
face. For first-time cluster setup, and for experimentation, this is your best option.

It is strongly recommended that the minimum number of nodes in a cluster is 3. For more explanation, see the
Cluster Theory section of this documentation.

After installation and initial start-up of all nodes in your cluster, ensuring all nodes are reachable, and the pre-
configuration steps listed above, visit Fauxton at http://<server1>:5984/_utils#setup. You will be asked
to set up CouchDB as a single-node instance or set up a cluster.

When you click “Setup Cluster” you are asked for admin credentials again, and then to add nodes by IP address.
To get more nodes, go through the same install procedure for each node, using the same machine to perform the
setup process. Be sure to specify the total number of nodes you expect to add to the cluster before adding nodes.

Now enter each node’s IP address or FQDN in the setup wizard, ensuring you also enter the previously set server
admin username and password.

Once you have added all nodes, click “Setup” and Fauxton will finish the cluster configuration for you.

To check that all nodes have been joined correctly, visit http://<server-IP|FQDN>:5984/_membership on
each node. The returned list should show all of the nodes in your cluster:

{

"all_nodes": [
"couchdb@serverl.test.com",
"couchdb@server2.test.com",
"couchdb@server3.test.com"

1,

"cluster_nodes": [
"couchdb@serverl.test.com",
"couchdb@server2.test.com",

"couchdb@server3.test.com"

The cluster_nodes section is the list of expected nodes; the all_nodes section is the list of actually connected
nodes. Be sure the two lists match.

Now your cluster is ready and available! You can send requests to any one of the nodes, and all three will respond
as if you are working with a single CouchDB cluster.

For a proper production setup, you’d now set up an HTTP reverse proxy in front of the cluster, for load balancing
and SSL termination. We recommend HAProxy, but others can be used. Sample configurations are available in
the Best Practices section.

6.2.5 The Cluster Setup API

If you would prefer to manually configure your CouchDB cluster, CouchDB exposes the _cluster_setup end-
point for that purpose. After installation and initial setup/config, we can set up the cluster. On each node we need
to run the following command to set up the node:

curl -X POST -H "Content-Type: application/json" http://admin:password@127.0.0.1:5984/
«_cluster_setup -d '{"action": "enable_cluster", "bind_address":"0.0.0.0", "username

—": "admin", "password":'"password", "node_count":"3"}'

After that we can join all the nodes together. Choose one node as the “setup coordination node” to run all these
commands on. This “setup coordination node” only manages the setup and requires all other nodes to be able to
see it and vice versa. It has no special purpose beyond the setup process;, CouchDB does not have the concept of
a “master” node in a cluster.

6.2. Cluster Set Up 199

http://haproxy.org/

Apache CouchDB®, Release 3.3.3

Setup will not work with unavailable nodes. All nodes must be online and properly preconfigured before the cluster
setup process can begin.

To join a node to the cluster, run these commands for each node you want to add:

curl -X POST -H "Content-Type: application/json" http://admin:password@<setup-
—,coordination-node>:5984/_cluster_setup -d '{"action": "enable_cluster", "bind_
—address":"0.0.0.0", "username": "admin", "password":"password", "port": 5984, "node_
—count": "3", "remote_node": "<remote-node-ip>", "remote_current_user": "<remote-
—-node-username>", "remote_current_password": "<remote-node-password>" }'

curl -X POST -H "Content-Type: application/json" http://admin:password@<setup-
—,coordination-node>:5984/_cluster_setup -d '{"action": "add_node", "host":"<remote-
—node-ip>", "port": <remote-node-port>, "username": "admin", "password":"password"}'

This will join the two nodes together. Keep running the above commands for each node you want to add to the
cluster. Once this is done run the following command to complete the cluster setup and add the system databases:

curl -X POST -H "Content-Type: application/json" http://admin:password@<setup-
—,coordination-node>:5984/_cluster_setup -d '{"action": "finish_ cluster"}'

Verify install:

curl http://admin:password@<setup-coordination-node>:5984/_cluster_setup

Response:

{"state":"cluster_finished"}

Verify all cluster nodes are connected:

curl http://admin:password@<setup-coordination-node>:5984/_membership

Response:
{

"all_nodes": [
"couchdb@couchl.test.com",
"couchdb@couch?2.test.com",
"couchdb@couch3.test.com",

1,

"cluster_nodes": [
"couchdb@couchl.test.com",

"couchdb@couch?2.test.com",

"couchdb@couch3.test.com",

If the cluster is enabled and all_nodes and cluster_nodes lists don’t match, use curl to add nodes with PUT
/_node/_local/_nodes/couchdb@<reachable-ip-address|fully-qualified-domain-name> and re-
move nodes with DELETE /_node/_local/_nodes/couchdb@<reachable-ip-address|fully-qualified-domain-name>

You CouchDB cluster is now set up.

200 Chapter 6. Setup

CHAPTER
SEVEN

CONFIGURATION

7.1 Introduction To Configuring

7.1.1 Configuration files

By default, CouchDB reads configuration files from the following locations, in the following order:
1. etc/default.ini
2. etc/default.d/*.ini
3. etc/local.ini
4. etc/local.d/*.ini

Configuration files in the *.d/ directories are sorted by name, that means for example a file with the name etc/
local.d/00-shared.ini is loaded before etc/local.d/10-server-specific.ini.

All paths are specified relative to the CouchDB installation directory: /opt/couchdb recommended on UNIX-
like systems, C:\CouchDB recommended on Windows systems, and a combination of two directories on macOS:
Applications/Apache CouchDB.app/Contents/Resources/couchdbx-core/etc for the default.ini
and default.d directories, and one of /Users/<your-user>/Library/Application Support/CouchDB2/
etc/couchdb or /Users/<your-user>/Library/Preferences/couchdb2-local.ini for the local.ini
and local.d directories.

Settings in successive documents override the settings in earlier entries. For example, setting the chttpd/
bind_address parameter in local.ini would override any setting in default.ini.

Warning: The default.ini file may be overwritten during an upgrade or re-installation, so localised changes
should be made to the local.ini file or files within the 1ocal.d directory.

The configuration file chain may be changed by setting the ERL_FLAGS environment variable:

export ERL_FLAGS="-couch_ini /path/to/my/default.ini /path/to/my/local.ini"

or by placing the -couch_ini .. flag directly in the etc/vm.args file. Passing -couch_ini .. as a command-
line argument when launching couchdb is the same as setting the ERL_FLAGS environment variable.

Warning: The environment variable/command-line flag overrides any -couch_ini option specified in the
etc/vm.args file. And, BOTH of these options completely override CouchDB from searching in the default
locations. Use these options only when necessary, and be sure to track the contents of etc/default.ini,
which may change in future releases.

If there is a need to use different vm.args or sys.config files, for example, in different locations to the ones
provided by CouchDB, or you don’t want to edit the original files, the default locations may be changed by setting
the COUCHDB_ARGS_FILE or COUCHDB_SYSCONFIG_FILE environment variables:

201

Apache CouchDB®, Release 3.3.3

export COUCHDB_ARGS_FILE="/path/to/my/vm.args"
export COUCHDB_SYSCONFIG_FILE="/path/to/my/sys.config"

7.1.2 Parameter names and values
All parameter names are case-sensitive. Every parameter takes a value of one of five types: boolean, integer, string,
tuple and proplist. Boolean values can be written as true or false.

Parameters with value type of fuple or proplist are following the Erlang requirement for style and naming.

7.1.3 Setting parameters via the configuration file

Changed in version 3.3: added ability to have = in parameter names
Changed in version 3.3: removed the undocumented ability to have multi-line values.
The common way to set some parameters is to edit the local.ini file (location explained above).

For example:

; This is a comment
[section]
param = value ; inline comments are allowed

Each configuration file line may contains section definition, parameter specification, empty (space and newline
characters only) or commented line. You can set up inline commentaries for sections or parameters.

The section defines group of parameters that are belongs to some specific CouchDB subsystem. For instance,
httpd section holds not only HTTP server parameters, but also others that directly interacts with it.

The parameter specification contains two parts divided by the equal sign (=): the parameter name on the left side
and the parameter value on the right one. The leading and following whitespace for = is an optional to improve
configuration readability.

Since version 3.3 it’s possible to use = in parameter names, but only when the parameter and value are separated
™ =, i.e. the equal sign is surrounded by at least one space on each side. This might
be useful in the " [jwt_keys] section, where base64 encoded keys may contain some = characters.

Note: In case when you’d like to remove some parameter from the default.ini without modifying that file, you
may override in local.ini, but without any value:

[compactions]
_default =

This could be read as: “remove the _default parameter from the compactions section if it was ever set before”.

The semicolon (;) signals the start of a comment. Everything after this character is ignored by CouchDB.

After editing the configuration file, CouchDB should be restarted to apply any changes.

202 Chapter 7. Configuration

http://www.erlang.org/doc/reference_manual/data_types.html#id66049
http://www.erlang.org/doc/man/proplists.html

Apache CouchDB®, Release 3.3.3

7.1.4 Setting parameters via the HTTP API

Alternatively, configuration parameters can be set via the HTTP API. This API allows changing CouchDB config-
uration on-the-fly without requiring a server restart:

curl -X PUT http://localhost:5984/_node/<name@host>/_config/uuids/algorithm -d '
—"random"'

The old parameter’s value is returned in the response:

"sequential”

You should be careful changing configuration via the HTTP API since it’s possible to make CouchDB unreachable,
for example, by changing the chttpd/bind_address:

curl -X PUT http://localhost:5984/_node/<name@host>/_config/chttpd/bind_address -d '
-"10.10.0.128""'

If you make a typo or the specified IP address is not available from your network, CouchDB will be unreachable.
The only way to resolve this will be to remote into the server, correct the config file, and restart CouchDB. To
protect yourself against such accidents you may set the chttpd/config_whitelist of permitted configuration
parameters for updates via the HTTP API. Once this option is set, further changes to non-whitelisted parameters
must take place via the configuration file, and in most cases, will also require a server restart before taking effect.

7.1.5 Configuring the local node

While the HTTP API allows configuring all nodes in the cluster, as a convenience, you can use the literal string
_local in place of the node name, to interact with the local node’s configuration. For example:

curl -X PUT http://localhost:5984/_node/_local/_config/uuids/algorithm -d '"random™'

7.2 Base Configuration

7.2.1 Base CouchDB Options

[couchdb]

attachment_stream_buffer_size

Higher values may result in better read performance due to fewer read operations and/or more OS
page cache hits. However, they can also increase overall response time for writes when there are many
attachment write requests in parallel.

[couchdb]
attachment_stream_buffer_size = 4096

database_dir

Specifies location of CouchDB database files (* . couch named). This location should be writable and
readable for the user the CouchDB service runs as (couchdb by default).

[couchdb]
database_dir = /var/lib/couchdb

default_security

Changed in version 3.0: admin_only is now the default.

7.2. Base Configuration 203

Apache CouchDB®, Release 3.3.3

Default security object for databases if not explicitly set. When set to everyone, anyone can per-
forms reads and writes. When set to admin_only, only admins can read and write. When set to
admin_local, sharded databases can be read and written by anyone but the shards can only be read
and written by admins.

[couchdb]
default_security = admin_only

enable_database_recovery

Enable this to only “soft-delete” databases when DELETE /{db} DELETE requests are made. This will
rename all shards of the database with a suffix of the form <dbname>.YMD.HMS.deleted. couchdb.
You can then manually delete these files later, as desired.

Default is false.

[couchdb]
enable_database_recovery = false

file_compression

Changed in version 1.2: Added Google Snappy compression algorithm.

Method used to compress everything that is appended to database and view index files, except for
attachments (see the attachments section). Available methods are:

* none: no compression
* snappy: use Google Snappy, a very fast compressor/decompressor

e deflate_N: use zlib’s deflate; N is the compression level which ranges from 1 (fastest, lowest
compression ratio) to 9 (slowest, highest compression ratio)

[couchdb]
file_compression = snappy

maintenance_mode

A CouchDB node may be put into two distinct maintenance modes by setting this configuration param-
eter.

 true: The node will not respond to clustered requests from other nodes and the /_up endpoint will
return a 404 response.

* nolb: The /_up endpoint will return a 404 response.
e false: The node responds normally, /_up returns a 200 response.

It is expected that the administrator has configured a load balancer in front of the CouchDB nodes in
the cluster. This load balancer should use the /_up endpoint to determine whether or not to send HTTP
requests to any particular node. For HAProxy, the following config is appropriate:

http-check disable-on-404
option httpchk GET /_up

max_dbs_open

This option places an upper bound on the number of databases that can be open at once. CouchDB
reference counts database accesses internally and will close idle databases as needed. Sometimes it is
necessary to keep more than the default open at once, such as in deployments where many databases
will be replicating continuously.

[couchdb]
max_dbs_open = 100

204

Chapter 7. Configuration

http://code.google.com/p/snappy/

Apache CouchDB®, Release 3.3.3

max_document_size
Changed in version 3.0.0.
Limit maximum document body size. Size is calculated based on the serialized Erlang representation

of the JSON document body, because that reflects more accurately the amount of storage consumed on
disk. In particular, this limit does not include attachments.

HTTP requests which create or update documents will fail with error code 413 if one or more documents
is larger than this configuration value.

In case of _update handlers, document size is checked after the transformation and right before being
inserted into the database.

[couchdb]
max_document_size = 8000000 ; bytes

Warning: Before version 2.1.0 this setting was implemented by simply checking http request body
sizes. For individual document updates via PUT that approximation was close enough, however
that is not the case for _bulk_docs endpoint. After 2.1.0 a separate configuration parameter was
defined: chttpd/max_http_request_size, which can be used to limit maximum http request
sizes. After upgrade, it is advisable to review those settings and adjust them accordingly.

os_process_timeout

If an external process, such as a query server or external process, runs for this amount of millisec-
onds without returning any results, it will be terminated. Keeping this value smaller ensures you get
expedient errors, but you may want to tweak it for your specific needs.

[couchdb]
os_process_timeout = 5000 ; 5 sec

single_node
New in version 3.0.0.

When this configuration setting is set to true, automatically create the system databases on startup.
Must be set false for a clustered CouchDB installation.

uri_file
This file contains the full URI that can be used to access this instance of CouchDB. It is used to help
discover the port CouchDB is running on (if it was set to ® (e.g. automatically assigned any free one).

This file should be writable and readable for the user that runs the CouchDB service (couchdb by
default).

[couchdb]
uri_file = /var/run/couchdb/couchdb.uri

users_db_security_editable
New in version 3.0.0.
When this configuration setting is set to false, reject any attempts to modify the _users database

security object. Modification of this object is deprecated in 3.x and will be completely disallowed in
CouchDB 4 x.

users_db_suffix

Specifies the suffix (last component of a name) of the system database for storing CouchDB users.

[couchdb]
users_db_suffix = _users

7.2. Base Configuration 205

http://en.wikipedia.org/wiki/URI

Apache CouchDB®, Release 3.3.3

Warning: If you change the database name, do not forget to remove or clean up the old database,
since it will no longer be protected by CouchDB.

util_driver_dir

Specifies location of binary drivers (icu, ejson, etc.). This location and its contents should be readable
for the user that runs the CouchDB service.

[couchdb]
util_driver_dir = /usr/lib/couchdb/erlang/lib/couch-1.5.0/priv/lib

uuid
New in version 1.3.

Unique identifier for this CouchDB server instance.

[couchdb]
uuid = 0a959b9b8227188afc2ac26ccdf345a6

view_index_dir

Specifies location of CouchDB view index files. This location should be writable and readable for the
user that runs the CouchDB service (couchdb by default).

[couchdb]
view_index_dir = /var/lib/couchdb

7.3 Configuring Clustering

7.3.1 Cluster Options

[cluster]

q

Sets the default number of shards for newly created databases. The default value, 2, splits a database into 2
separate partitions.

[cluster]
q=2

For systems with only a few, heavily accessed, large databases, or for servers with many CPU cores, consider
increasing this value to 4 or 8.

The value of g can also be overridden on a per-DB basis, at DB creation time.
See also:
PUT /{db}

n

Sets the number of replicas of each document in a cluster. CouchDB will only place one replica per node in
a cluster. When set up through the Cluster Setup Wizard, a standalone single node will have n = 1, a two
node cluster will have n = 2, and any larger cluster will have n = 3. It is recommended not to set n greater
than 3.

[cluster]
n =3

206

Chapter 7. Configuration

Apache CouchDB®, Release 3.3.3

placement

Warning: Use of this option will override the n option for replica cardinality. Use with care.

Sets the cluster-wide replica placement policy when creating new databases. The value must be a comma-
delimited list of strings of the format zone_name : #, where zone_name is a zone as specified in the nodes
database and # is an integer indicating the number of replicas to place on nodes with a matching zone_name.

This parameter is not specified by default.

[cluster]
placement = metro-dc-a:2,metro-dc-b:1

See also:
Placing a database on specific nodes

seedlist

An optional, comma-delimited list of node names that this node should contact in order to join a cluster. If a
seedlist is configured the _up endpoint will return a 404 until the node has successfully contacted at least one
of the members of the seedlist and replicated an up-to-date copy of the _nodes, _dbs, and _users system
databases.

[cluster] seedlist = couchdb@nodel.example.com,couchdb@node2.example.com

reconnect_interval_sec
New in version 3.3.

Period in seconds specifying how often to attempt reconnecting to disconnected nodes. There is a 25%
random jitter applied to this value.

7.3.2 RPC Performance Tuning

[rexi]
CouchDB uses distributed Erlang to communicate between nodes in a cluster. The rexi library provides an
optimized RPC mechanism over this communication channel. There are a few configuration knobs for this
system, although in general the defaults work well.

buffer_count

The local RPC server will buffer messages if a remote node goes unavailable. This flag determines how
many messages will be buffered before the local server starts dropping messages. Default value is 2000.

server_per_node

By default, rexi will spawn one local gen_server process for each node in the cluster. Disabling this flag
will cause CouchDB to use a single process for all RPC communication, which is not recommended in high
throughput deployments.

stream_limit
New in version 3.0.

This flag comes into play during streaming operations like views and change feeds. It controls how many
messages a remote worker process can send to a coordinator without waiting for an acknowledgement from
the coordinator process. If this value is too large the coordinator can become overwhelmed by messages
from the worker processes and actually deliver lower overall throughput to the client. In CouchDB 2.x this
value was hard-coded to 10. In the 3.x series it is configurable and defaults to 5. Databases with a high q
value are especially sensitive to this setting.

7.3. Configuring Clustering 207

mailto:couchdb@node1.example.com

Apache CouchDB®, Release 3.3.3

7.4 Database Per User

7.4.1 Database Per User Options

[couch_peruser]
enable

If set to true, couch_peruser ensures that a private per-user database exists for each document in _users.
These databases are writable only by the corresponding user. Database names are in the following form:
userdb-{UTF-8 hex encoded username}.

[couch_peruser]
enable = false

Note: The _users database must exist before couch_peruser can be enabled.

Tip: Under NodeJS, user names can be converted to and from database names thusly:

function dbNameToUsername(prefixedHexName) {

return Buffer.from(prefixedHexName.replace('userdb-', ''), 'hex').toString(
< 'utf8');
}

function usernameToDbName (name) {
return 'userdb-' + Buffer.from(name).toString('hex');

}

delete_dbs

If set to true and a user is deleted, the respective database gets deleted as well.

[couch_peruser]
delete_dbs = false

Note: When using JWT authorization, the provided token must include a custom _couchdb.
roles=['_admin'] claim to for the peruser database to be properly created and accessible for the user
provided in the sub= claim.

q

If set, specify the sharding value for per-user databases. If unset, the cluster default value will be used.

[couch_peruser] q = 1

7.5 CouchDB HTTP Server

7.5.1 HTTP Server Options

[chttpd]

208 Chapter 7. Configuration

Apache CouchDB®, Release 3.3.3

Note: In CouchDB 2.x and 3.x, the chttpd section refers to the standard, clustered port. All use of CouchDB,
aside from a few specific maintenance tasks as described in this documentation, should be performed over

this port.

bind_address
Defines the IP address by which the clustered port is available:

[chttpd]
bind_address = 127.0.0.1

To let CouchDB listen any available IP address, use 8.0.0.0:

[chttpd]
bind_address = 0.0.0.0

For IPv6 support you need to set : : 1 if you want to let CouchDB listen correctly:

[chttpd]
bind_address = ::1

or :: for any available:

[chttpd]
bind_address = ::

port
Defines the port number to listen:

[chttpd]
port = 5984

To let CouchDB use any free port, set this option to 0:

[chttpd]
port = O

prefer_minimal
If a request has the header "Prefer": "return=minimal", CouchDB will only send the headers
that are listed for the prefer_minimal configuration.:

[chttpd]
prefer_minimal = Cache-Control, Content-Length, Content-Range, Content-Type,.

—ETag, Server, Transfer-Encoding, Vary

Warning: Removing the Server header from the settings will mean that the CouchDB server
header is replaced with the MochiWeb server header.

authentication_handlers
List of authentication handlers used by CouchDB. You may extend them via third-party plugins or
remove some of them if you won’t let users to use one of provided methods:

[chttpd]
authentication_handlers = {chttpd_auth, cookie_authentication_handler},

—{chttpd_auth, default_authentication_handler}

7.5. CouchDB HTTP Server 209

Apache CouchDB®, Release 3.3.3

e {chttpd_auth, cookie_authentication_handler}: used for Cookie auth;
e {chttpd_auth, proxy_authentication_handler}: used for Proxy auth;

e {chttpd_auth, jwt_authentication_handler}: used for JWT auth;

e {chttpd_auth, default_authentication_handler}: used for Basic auth;

e {couch_httpd_auth, null_authentication_handler}: disables auth, breaks CouchDB.

buffer_response
Changed in version 3.1.1.
Set this to true to delay the start of a response until the end has been calculated. This increases
memory usage, but simplifies client error handling as it eliminates the possibility that a response may

be deliberately terminated midway through, due to a timeout. This config value may be changed at
runtime, without impacting any in-flight responses.

Even if this is set to false (the default), buffered responses can be enabled on a per-request basis for
any delayed JSON response call by adding ?buffer_response=true to the request’s parameters.

allow_jsonp
Changed in version 3.2: moved from [httpd] to [chttpd] section

The true value of this option enables JSONP support (it’s false by default):

[chttpd]
allow_jsonp = false

changes_timeout
Changed in version 3.2: moved from [httpd] to [chttpd] section

Specifies default timeout value for Changes Feed in milliseconds (60000 by default):

[chttpd]
changes_timeout = 60000 ; 60 seconds

config_whitelist
Changed in version 3.2: moved from [httpd] to [chttpd] section

Sets the configuration modification whitelist. Only whitelisted values may be changed via the con-
fig API. To allow the admin to change this value over HTTP, remember to include {chttpd,
config_whitelist} itself. Excluding it from the list would require editing this file to update the
whitelist:

[chttpd]
config_whitelist = [{chttpd,config whitelist}, {log,level}, {etc,etc}]

enable_cors
New in version 1.3.

Changed in version 3.2: moved from [httpd] to [chttpd] section
Controls CORS feature:

[chttpd]
enable_cors = false

secure_rewrites
Changed in version 3.2: moved from [httpd] to [chttpd] section

This option allow to isolate databases via subdomains:

210 Chapter 7. Configuration

https://en.wikipedia.org/wiki/JSONP

Apache CouchDB®, Release 3.3.3

[chttpd]
secure_rewrites = true

x_forwarded_host
Changed in version 3.2: moved from [httpd] to [chttpd] section
The x_forwarded_host header (X-Forwarded-Host by default) is used to forward the original value

of the Host header field in case, for example, if a reverse proxy is rewriting the “Host” header field to
some internal host name before forward the request to CouchDB:

[chttpd]
x_forwarded_host = X-Forwarded-Host

This header has higher priority above Host one, if only it exists in the request.
x_forwarded_proto
Changed in version 3.2: moved from [httpd] to [chttpd] section

x_forwarded_proto header (X-Forwarder-Proto by default) is used for identifying the originating
protocol of an HTTP request, since a reverse proxy may communicate with CouchDB instance using
HTTP even if the request to the reverse proxy is HTTPS:

[chttpd]
x_forwarded_proto = X-Forwarded-Proto

x_forwarded_ssl
Changed in version 3.2: moved from [httpd] to [chttpd] section
The x_forwarded_ssl header (X-Forwarded-Ss1 by default) tells CouchDB that it should use the hztps

scheme instead of the Aztp. Actually, it’s a synonym for X-Forwarded-Proto: https header, but
used by some reverse proxies:

[chttpd]
x_forwarded_ssl = X-Forwarded-Ssl

enable_xframe_options
Changed in version 3.2: moved from [httpd] to [chttpd] section

Controls Enables or disabled feature:

[chttpd]
enable_xframe_options = false

max_http_request_size
Changed in version 3.2: moved from [httpd] to [chttpd] section

Limit the maximum size of the HTTP request body. This setting applies to all requests and it doesn’t
discriminate between single vs. multi-document operations. So setting it to IMB would block a PUT
of a document larger than 1MB, but it might also block a _bulk_docs update of 1000 1KB documents,
or a multipart/related update of a small document followed by two 512KB attachments. This setting
is intended to be used as a protection against maliciously large HTTP requests rather than for limiting
maximum document sizes.

[chttpd]
max_http_request_size = 4294967296 ; 4 GB

Warning: Before version 2.1.0 couchdb/max_document_size was implemented effectively as
max_http_request_size. That is, it checked HTTP request bodies instead of document sizes.
After the upgrade, it is advisable to review the usage of these configuration settings.

7.5. CouchDB HTTP Server 211

Apache CouchDB®, Release 3.3.3

bulk_get_use_batches
New in version 3.3.
Set to false to revert to a previous _bulk_get implementation using single doc fetches internally.

Using batches should be faster, however there may be bugs in the new new implemention, so expose
this option to allow reverting to the old behavior.

[chttpd]
bulk_get_use_batches = true

admin_only_all_dbs

New in version 2.2: implemented for _all_dbs defaulting to false
Changed in version 3.0: default switched to true, applies to _all_dbs
Changed in version 3.3: applies for _all_dbs and _dbs_info

When set to true admin is required to access _all_dbs and _dbs_info.

[chttpd]
admin_only_all_dbs = true

disconnect_check_msec

New in version 3.3.3.

How often, in milliseconds, to check for client disconnects while processing streaming requests such
as _all_docs, _find, _changes and views.

[chttpd]
disconnect_check_msec = 30000

disconnect_check_jitter_msec

New in version 3.3.3.

How much random jitter to apply to the disconnect_check_msec period. This is to avoid stampede
in case of a large number of concurrent clients.

[chttpd]
disconnect_check_jitter_msec = 15000

[httpd]

Changed in version 3.2: These options were moved to [chttpd] section: allow_jsonp, changes_timeout, con-
fig_whitelist, enable_cors, secure_rewrites, x_forwarded_host, x_forwarded_proto, x_forwarded_ssl, en-
able_xframe_options, max_http_request_size.

server_options

Server options for the MochiWeb component of CouchDB can be added to the configuration files:

[httpd]
server_options = [{backlog, 128}, {acceptor_pool_size, 16}]

The options supported are a subset of full options supported by the TCP/IP stack. A list of the supported
options are provided in the Erlang inet documentation.

socket_options

The socket options for the listening socket in CouchDB, as set at the beginning of ever request, can be
specified as a list of tuples. For example:

[httpd]
socket_options = [{sndbuf, 262144}]

212 Chapter 7. Configuration

http://www.erlang.org/doc/man/inet.html#setopts-2

Apache CouchDB®, Release 3.3.3

The options supported are a subset of full options supported by the TCP/IP stack. A list of the supported
options are provided in the Erlang inet documentation.

7.5.2 HTTPS (SSL/TLS) Options

[ssl]
CouchDB supports TLS/SSL natively, without the use of a proxy server.
HTTPS setup can be tricky, but the configuration in CouchDB was designed to be as easy as possible. All

you need is two files; a certificate and a private key. If you have an official certificate from a certificate
authority, both should be in your possession already.

If you just want to try this out and don’t want to go through the hassle of obtaining an official certificate, you
can create a self-signed certificate. Everything will work the same, but clients will get a warning about an
insecure certificate.

You will need the OpenSSL command line tool installed. It probably already is.

shell> mkdir /etc/couchdb/cert

shell> cd /etc/couchdb/cert

shell> openssl genrsa > privkey.pem

shell> openssl req -new -x509 -key privkey.pem -out couchdb.pem -days 1095
shell> chmod 600 privkey.pem couchdb.pem

shell> chown couchdb privkey.pem couchdb.pem

Now, you need to edit CouchDB’s configuration, by editing your local.ini file. Here is what you need to
do.

Under the [ss1] section, enable HTTPS and set up the newly generated certificates:

[ssl]

enable = true

cert_file = /etc/couchdb/cert/couchdb.pem
key_file = /etc/couchdb/cert/privkey.pem

For more information please read certificates HOWTO.

Now start (or restart) CouchDB. You should be able to connect to it using HTTPS on port 6984:

shell> curl https://127.0.0.1:6984/

curl: (60) SSL certificate problem, verify that the CA cert is OK. Details:
error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed
More details here: http://curl.haxx.se/docs/sslcerts.html

curl performs SSL certificate verification by default, using a "bundle"
of Certificate Authority (CA) public keys (CA certs). If the default
bundle file isn't adequate, you can specify an alternate file

using the --cacert option.

If this HTTPS server uses a certificate signed by a CA represented in
the bundle, the certificate verification probably failed due to a
problem with the certificate (it might be expired, or the name might
not match the domain name in the URL).

If you'd like to turn off curl's verification of the certificate, use
the -k (or --insecure) option.

Oh no! What happened?! Remember, clients will notify their users that your certificate is self signed. curl
is the client in this case and it notifies you. Luckily you trust yourself (don’t you?) and you can specify the
-k option as the message reads:

7.5. CouchDB HTTP Server 213

http://www.erlang.org/doc/man/inet.html#setopts-2
http://www.openssl.org/
http://www.openssl.org/docs/HOWTO/certificates.txt

Apache CouchDB®, Release 3.3.3

shell> curl -k https://127.0.0.1:6984/
{"couchdb":"Welcome","version":"1.5.0"}

All done.

For performance reasons, and for ease of setup, you may still wish to terminate HTTPS connections at your
load balancer / reverse proxy, then use unencrypted HTTP between it and your CouchDB cluster. This is a
recommended approach.

Additional detail may be available in the CouchDB wiki.

cacert_file

The path to a file containing PEM encoded CA certificates. The CA certificates are used to build the
server certificate chain, and for client authentication. Also the CAs are used in the list of acceptable
client CAs passed to the client when a certificate is requested. May be omitted if there is no need to
verify the client and if there are not any intermediate CAs for the server certificate:

[ssl]
cacert_file = /etc/ssl/certs/ca-certificates.crt

cert_file

Path to a file containing the user’s certificate:

[ssl]
cert_file = /etc/couchdb/cert/couchdb.pem

key_file
Path to file containing user’s private PEM encoded key:

[ssl]
key_file = /etc/couchdb/cert/privkey.pem

password
String containing the user’s password. Only used if the private key file is password protected:

[ssl]
password = somepassword

ssl_certificate_max_depth
Maximum peer certificate depth (must be set even if certificate validation is off):

[ssl]
ssl_certificate_max_depth =1

verify_fun

The verification fun (optional) if not specified, the default verification fun will be used:

[ssl]
verify_fun = {Module, VerifyFun}

verify_ssl_certificates

Set to true to validate peer certificates:

[ssl]
verify_ssl_certificates = false

214

Chapter 7. Configuration

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=48203146

Apache CouchDB®, Release 3.3.3

fail_if no_peer_cert

Set to true to terminate the TLS/SSL handshake with a handshake_failure alert message if the
client does not send a certificate. Only used if verify_ssl_certificatesis true. If set to false
it will only fail if the client sends an invalid certificate (an empty certificate is considered valid):

[ssl]
fail_if no_peer_cert = false

secure_renegotiate
Set to true to reject renegotiation attempt that does not live up to RFC 5746:

[ssl]
secure_renegotiate = true

ciphers

Set to the cipher suites that should be supported which can be specified in erlang format
“{ecdhe_ecdsa,aes_128_cbc,sha256}” or in OpenSSL format “ECDHE-ECDSA-AES128-SHA256”.

[ssl]
ciphers = ["ECDHE-ECDSA-AES128-SHA256", "ECDHE-ECDSA-AES128-SHA"]

tls_versions
Set to a list of permitted SSL/TLS protocol versions:

[ssl]
tls_versions = [tlsvl | 'tlsvl.1' | "tlsvl.2']

7.5.3 Cross-Origin Resource Sharing

[cors]
New in version 1.3: added CORS support, see JJIRA COUCHDB-431

Changed in version 3.2: moved from [httpd] to [chttpd] section

CORS, or “Cross-Origin Resource Sharing”, allows a resource such as a web page running JavaScript inside
a browser, to make AJAX requests (XMLHttpRequests) to a different domain, without compromising the
security of either party.

A typical use case is to have a static website hosted on a CDN make requests to another resource, such as a
hosted CouchDB instance. This avoids needing an intermediary proxy, using JSONP or similar workarounds
to retrieve and host content.

While CouchDB’s integrated HTTP server has support for document attachments makes this less of a con-
straint for pure CouchDB projects, there are many cases where separating the static content from the database
access is desirable, and CORS makes this very straightforward.

By supporting CORS functionality, a CouchDB instance can accept direct connections to protected databases
and instances, without the browser functionality being blocked due to same-origin constraints. CORS is
supported today on over 90% of recent browsers.

CORS support is provided as experimental functionality in 1.3, and as such will need to be enabled specifi-
cally in CouchDB’s configuration. While all origins are forbidden from making requests by default, support
is available for simple requests, preflight requests and per-vhost configuration.

This section requires chttpd/enable_cors option have true value:

[chttpd]
enable_cors = true

7.5. CouchDB HTTP Server 215

https://issues.apache.org/jira/browse/COUCHDB-431

Apache CouchDB®, Release 3.3.3

credentials
By default, neither authentication headers nor cookies are included in requests and responses. To do
so requires both setting XmlHttpRequest.withCredentials = true on the request object in the
browser and enabling credentials support in CouchDB.

[cors]
credentials = true

CouchDB will respond to a credentials-enabled CORS request with an additional header,
Access-Control-Allow-Credentials=true.
origins
List of origins separated by a comma, * means accept all. You can’t set origins = * and
credentials = true option at the same time:

[cors]
origins = *

Access can be restricted by protocol, host and optionally by port. Origins must follow the scheme:
http://example.com:80:

[cors]
origins = http://localhost, https://localhost, http://couch.mydev.name: 8080

Note that by default, no origins are accepted. You must define them explicitly.

headers
List of accepted headers separated by a comma:

[cors]
headers = X-Couch-Id, X-Couch-Rev

methods
List of accepted methods:

[cors]
methods = GET,POST

max_age
Sets the Access-Control-Max-Age header in seconds. Use it to avoid repeated OPTIONS requests.

[cors] max_age = 3600
See also:
Original JIRA implementation ticket
Standards and References:
* IETF RFCs relating to methods: RFC 2618, RFC 2817, RFC 5789
» IETF RFC for Web Origins: RFC 6454
* W3C CORS standard
Mozilla Developer Network Resources:
e Same origin policy for URIs
* HTTP Access Control
* Server-side Access Control

¢ JavaScript same origin policy

216 Chapter 7. Configuration

http://example.com:80
https://issues.apache.org/jira/browse/COUCHDB-431
https://datatracker.ietf.org/doc/html/rfc2618.html
https://datatracker.ietf.org/doc/html/rfc2817.html
https://datatracker.ietf.org/doc/html/rfc5789.html
https://datatracker.ietf.org/doc/html/rfc6454.html
http://www.w3.org/TR/cors
https://developer.mozilla.org/en-US/docs/Same-origin_policy_for_file:_URIs
https://developer.mozilla.org/En/HTTP_access_control
https://developer.mozilla.org/En/Server-Side_Access_Control
https://developer.mozilla.org/en-US/docs/Same_origin_policy_for_JavaScript

Apache CouchDB®, Release 3.3.3

Client-side CORS support and usage:
* CORS browser support matrix
¢ COS tutorial
¢ XHR with CORS

Per Virtual Host Configuration

Warning: Virtual Hosts are deprecated in CouchDB 3.0, and will be removed in CouchDB 4.0.

To set the options for a vhosts, you will need to create a section with the vhost name prefixed by cors:. Example
case for the vhost example.com:

[cors:example.com]

credentials = false

; List of origins separated by a comma

origins = *

; List of accepted headers separated by a comma
headers = X-CouchDB-Header

; List of accepted methods

methods = HEAD, GET

A video from 2010 on vhost and rewrite configuration is available, but is not guaranteed to match current syntax
or behaviour.

7.5.4 Virtual Hosts

Warning: Virtual Hosts are deprecated in CouchDB 3.0, and will be removed in CouchDB 4.0.

[vhosts]

CouchDB can map requests to different locations based on the Host header, even if they arrive on the same
inbound IP address.

This allows different virtual hosts on the same machine to map to different databases or design documents,
etc. The most common use case is to map a virtual host to a Rewrite Handler, to provide full control over
the application’s URIs.

To add a virtual host, add a CNAME pointer to the DNS for your domain name. For development and testing,
it is sufficient to add an entry in the hosts file, typically /etc/hosts * on Unix-like operating systems:

CouchDB vhost definitions, refer to local.ini for further details
127.0.0.1 couchdb.local

Test that this is working:

$ ping -n 2 couchdb.local

PING couchdb.local (127.0.0.1) 56(84) bytes of data.

64 bytes from localhost (127.0.0.1): icmp_reqg=1 ttl=64 time=0.025 ms
64 bytes from localhost (127.0.0.1): icmp_reg=2 ttl=64 time=0.051 ms

Finally, add an entry to your configuration file in the [vhosts] section:

7.5. CouchDB HTTP Server 217

http://caniuse.com/cors
http://www.html5rocks.com/en/tutorials/cors/
http://hacks.mozilla.org/2009/07/cross-site-xmlhttprequest-with-cors/
https://vimeo.com/20773112

Apache CouchDB®, Release 3.3.3

[vhosts]
couchdb.local:5984 = /example
*.couchdb.local:5984 = /example

If your CouchDB is listening on the the default HTTP port (80), or is sitting behind a proxy, then you don’t
need to specify a port number in the vhost key.

The first line will rewrite the request to display the content of the example database. This rule works only
if the Host header is couchdb.local and won’t work for CNAMEs. The second rule, on the other hand,
matches all CNAME: to example db, so that both www.couchdb.local and db.couchdb.local will work.

Rewriting Hosts to a Path

Like in the _rewrife handler you can match some variable and use them to create the target path. Some examples:

[vhosts]
,couchdb.local = /
:dbname. = /:dbname

:ddocname. : dbname.example.com = /:dbname/_design/:ddocname/_rewrite

The first rule passes the wildcard as dbname. The second one does the same, but uses a variable name. And the
third one allows you to use any URL with ddocname in any database with dbname.

7.5.5 X-Frame-Options

X-Frame-Options is a response header that controls whether a http response can be embedded in a <frame>,
<iframe> or <object>. This is a security feature to help against clickjacking.

[x_frame_options] ; Settings same-origin will return X-Frame-Options: SAMEORIGIN. ; If same
origin is set, it will ignore the hosts setting ; same_origin = true ; Settings hosts will ; return X-Frame-
Options: ALLOW-FROM https://example.com/ ; List of hosts separated by a comma. * means accept
all ; hosts =

If xframe_options is enabled it will return X-Frame-Options: DENY by default. If same_origin is enabled
it will return X-Frame-Options: SAMEORIGIN. A X-FRAME-OPTIONS: ALLOW-FROM url will be returned
when same_origin is false, and the HOST header matches one of the urls in the hosts config. Otherwise a
X-Frame-Options: DENY will be returned.

7.6 Authentication and Authorization

7.6.1 Server Administrators

[admins]

Changed in version 3.0.0: CouchDB requires an admin account to start. If an admin account has not been created,
CouchDB will print an error message and terminate.

CouchDB server administrators and passwords are not stored in the _users database, but in the last [admins]
section that CouchDB finds when loading its ini files. See :config:intro for details on config file order and behaviour.
This file (which could be something like /opt/couchdb/etc/local.ini or /opt/couchdb/etc/local.d/
10-admins.ini when CouchDB is installed from packages) should be appropriately secured and readable only
by system administrators:

[admins]
;admin = mysecretpassword
admin = -hashed-6d3c30241balaaad4el6c6ea99224f915687ed8cd,

(continues on next page)

218 Chapter 7. Configuration

https://example.com/

Apache CouchDB®, Release 3.3.3

(continued from previous page)

—7f4a3e05e0chc6£48a0035e3508eef90
architect = -pbkdf2-43echd256a70a3a2f7de40d2374b6c3002918834,
—921a12£f74d£f0c1052b3e562a23cd227£f, 10000

Administrators can be added directly to the [admins] section, and when CouchDB is restarted, the passwords will
be salted and encrypted. You may also use the HTTP interface to create administrator accounts; this way, you don’t
need to restart CouchDB, and there’s no need to temporarily store or transmit passwords in plaintext. The HTTP
/_node/{node-name}/_config/admins endpoint supports querying, deleting or creating new admin accounts:

GET /_node/nonode@nohost/_config/admins HTTP/1.1
Accept: application/json
Host: localhost:5984

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 196

Content-Type: application/json
Date: Fri, 30 Nov 2012 11:37:18 GMT
Server: CouchDB (Erlang/OTP)

{
"admin": "-hashed-6d3c30241bafaaad4el6c6ea99224f915687ed8cd,
—7fd4a3e05e0cbc6£48a0035e3508eef90",
"architect": "-pbkdf2-43ecbd256a70a3a2f7de40d2374b6c3002918834,
921a12£74d£f0c1052b3e562a23cd227£f,10000"
}

If you already have a salted, encrypted password string (for example, from an old ini file, or from a different
CouchDB server), then you can store the “raw” encrypted string, without having CouchDB doubly encrypt it.

PUT /_node/nonode@nohost/_config/admins/architect?raw=true HTTP/1.1
Accept: application/json

Content-Type: application/json

Content-Length: 89

Host: localhost:5984

"-pbkdf2-43ecbd256a70a3a2f7de40d2374b6c3002918834,921a12£74df0c1052b3e562a23cd227f,
—10000"

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 89

Content-Type: application/json
Date: Fri, 30 Nov 2012 11:39:18 GMT
Server: CouchDB (Erlang/OTP)

"-pbkdf2-43ecbd256a70a3a2f7de40d2374b6c3002918834,921a12f74df0c1052b3e562a23cd2271,
—10000"

Further details are available in security, including configuring the work factor for PBKDF2, and the algorithm itself
at PBKDF2 (RFC-2898).

Changed in version 1.4: PBKDF?2 server-side hashed salted password support added, now as a synchronous call
for the _config/admins APIL.

7.6. Authentication and Authorization 219

http://tools.ietf.org/html/rfc2898

Apache CouchDB®, Release 3.3.3

7.6.2 Authentication Configuration

[chttpd]
require_valid_user
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd] section

When this option is set to true, no requests are allowed from anonymous users. Everyone must be
authenticated.

[chttpd]
require_valid_user = false

require_valid_user_except_for_up

When this option is set to true, no requests are allowed from anonymous users, except for the /_up
endpoint. Everyone else must be authenticated.

[chttpd]
require_valid_user_except_for_up = false

[chttpd_auth]

Changed in version 3.2: These options were moved to [chttpd_auth] section: authentication_redirect,
timeout, auth_cache_size, allow_persistent_cookies, iterations, min_iterations, max_iterations, secret,
users_db_public, x_auth_roles, x_auth_token, x_auth_username, cookie_domain, same_site.

allow_persistent_cookies
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

When set to true, CouchDB will set the Max-Age and Expires attributes on the cookie, which causes
user agents (like browsers) to preserve the cookie over restarts.

[chttpd_auth]
allow_persistent_cookies = true

cookie_domain

New in version 2.1.1.
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

Configures the domain attribute of the AuthSession cookie. By default the domain attribute is empty,
resulting in the cookie being set on CouchDB’s domain.

[chttpd_auth]
cookie_domain = example.com

same_site

New in version 3.0.0.
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

When this option is set to a non-empty value, a SameSite attribute is added to the AuthSession
cookie. Valid values are none, 1ax or strict.:

[chttpd_auth]
same_site = strict

auth_cache_size
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

Number of User Context Object to cache in memory, to reduce disk lookups.

220 Chapter 7. Configuration

Apache CouchDB®, Release 3.3.3

[chttpd_auth]
auth_cache_size = 50

authentication_redirect
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

Specifies the location for redirection on successful authentication if a text/html response is accepted
by the client (via an Accept header).

[chttpd_auth]
authentication_redirect = /_utils/session.html

hash_algorithms
New in version 3.3.

Note: Until CouchDB version 3.3.1, Proxy Authentication used only the hash algorithm shal as
validation of X-Auth-CouchDB-Token.

Sets the HMAC hash algorithm used for cookie and proxy authentication. You can provide a comma-
separated list of hash algorithms. New cookie sessions or session updates are calculated with the
first hash algorithm. All values in the list can be used to decode the cookie session and the token
X-Auth-CouchDB-Token for Proxy Authentication.

[chttpd_auth]
hash_algorithms = sha256, sha

Note: You can select any hash algorithm the version of erlang used in your CouchDB install supports.
The common list of available hashes might be:

sha, sha224, sha256, sha384, sha512

To retrieve a complete list of supported hash algorithms you can use our bin/remsh script
and retrieve a full list of available hash algorithms with crypto:supports(hashs). or use the
_node/$node/_versions endpoint to retrieve the hashes.

Warning: We do not recommend using the following hash algorithms:

md4, md5

iterations

New in version 1.3.
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

The number of iterations for password hashing by the PBKDF2 algorithm. A higher number provides
better hash durability, but comes at a cost in performance for each request that requires authentication.
When using hundreds of thousands of iterations, use session cookies, or the performance hit will be
huge. (The internal hashing algorithm is SHA1, which affects the recommended number of iterations.)

[chttpd_auth]
iterations = 10000

min_iterations

New in version 1.6.

7.6. Authentication and Authorization 221

Apache CouchDB®, Release 3.3.3

Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

The minimum number of iterations allowed for passwords hashed by the PBKDF?2 algorithm. Any user
with fewer iterations is forbidden.

[chttpd_auth]
min_iterations = 100

max_iterations

New in version 1.6.
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

The maximum number of iterations allowed for passwords hashed by the PBKDF2 algorithm. Any
user with greater iterations is forbidden.

[chttpd_auth]

max_iterations = 100000

password_regexp

New in version 3.2.

A list of Regular Expressions to check new/changed passwords. When set, new user passwords must
match all RegExp in this list.

A RegExp can be paired with a reason text: [{"RegExp", "reason text"}, ...]. If a RegExp
doesn’t match, its reason text will be appended to the default reason of Password does not conform
to requirements.

[couch_httpd_auth]

; Password must be 10 chars long and have one or more uppercase and

; lowercase char and one or more numbers.

password_regexp = [{".{10,}", "Min length is 10 chars."}, "[A-Z]+", "[a-z]+",
= "\\d+"]

proxy_use_secret

Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

When this option is set to true, the chttpd_auth/secret option is required for Proxy Authentication.

[chttpd_auth]
proxy_use_secret = false

public_fields

New in version 1.4.
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

A comma-separated list of field names in user documents (in couchdb/users_db_suffix) that can
be read by any user. If unset or not specified, authenticated users can only retrieve their own document.

[chttpd_auth]
public_fields = first_name, last_name, contacts, url

Note: Using the public_fields allowlist for user document properties requires setting the
chttpd_auth/users_db_public option to true (the latter option has no other purpose):

[chttpd_auth]
users_db_public = true

222

Chapter 7. Configuration

https://erlang.org/doc/man/re.html#regexp_syntax

Apache CouchDB®, Release 3.3.3

secret
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

The secret token is used for Proxy Authentication and for Cookie Authentication.

[chttpd_auth]
secret = 92de07df7e7a3fe14808cef90a7cc0d9l

timeout
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

Number of seconds since the last request before sessions will be expired.

[chttpd_auth]
timeout = 600

users_db_public

New in version 1.4.
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

Allow all users to view user documents. By default, only admins may browse all users documents,
while users may browse only their own document.

[chttpd_auth]
users_db_public = false

x_auth_roles
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

The HTTP header name (X-Auth-CouchDB-Roles by default) that contains the list of a user’s roles,
separated by a comma. Used for Proxy Authentication.

[chttpd_auth]
x_auth_roles = X-Auth-CouchDB-Roles

x_auth_token
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

The HTTP header name (X-Auth-CouchDB-Token by default) containing the token used to authen-
ticate the authorization. This token is an HMAC-SHAI created from the chttpd_auth/secret and
chttpd_auth/x_auth_username. The secret key should be the same on the client and the CouchDB
node. This token is optional if the value of the chttpd_auth/proxy_use_secret option is not true.
Used for Proxy Authentication.

[chttpd_auth]
x_auth_token = X-Auth-CouchDB-Token

x_auth_username
Changed in version 3.2: moved from [couch_httpd_auth] to [chttpd_auth] section

The HTTP header name (X-Auth-CouchDB-UserName by default) containing the username. Used for
Proxy Authentication.

[chttpd_auth]
x_auth_username = X-Auth-CouchDB-UserName

[jwt_auth]

7.6. Authentication and Authorization 223

Apache CouchDB®, Release 3.3.3

required_claims

This parameter is a comma-separated list of additional mandatory JWT claims that must be present in
any presented JWT token. A 404 Not Found is sent if any are missing.

[jwt_auth]
required_claims = exp,iat

roles_claim_name

Warning: roles_claim_name is deprecated in CouchDB 3.3, and will be removed later. Please
migrate to roles_claim_path.

If presented, as a JSON array of strings, it is used as the CouchDB user’s roles list as long as the JWT
token is valid. The default value for roles_claim_name is _couchdb.roles.

Note: Values for roles_claim_name can only be top-level attributes in the JWT token. If
roles_claim_path is set, then roles_claim_name is ignored!

Let’s assume, we have the following configuration:

[jwt_auth]
roles_claim_name = my-couchdb.roles

CouchDB will search for the attribute my-couchdb.roles in the JWT token.

{

"my-couchdb.roles": [
"role_1",
"role_2"

roles_claim_path

New in version 3.3.

This parameter was introduced to overcome disadvantages of roles_claim_name, because it is not
possible with roles_claim_name to map nested role attributes in the JWT token.

Note: If roles_claim_path is set, then roles_claim_name is ignored!

Now it is possible the read a nested roles claim from JWT tokens into CouchDB. As always, there is
some theory at the beginning to get things up and running. Don’t get scared now, it’s really short and
easy. Honestly!

There are only two characters with a special meaning. These are
* . for nesting json attributes and
* \. to skip nesting

That’s it. Really.

Let’s assume there is the following data-payload in the JWT token:

{
"resource_access": {
"security.settings": {

(continues on next page)

224

Chapter 7. Configuration

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"account": {
"roles": [
"manage-account",
"view-profile"

Now, let’s define the config variable roles_claim_path for this example. It should look like this:

roles_claim_path = resource_access.security\.settings.account.roles

If an attribute has a . in the key like security.settings, you have to escape it in the config parameter
with \.. If you use a . then it gets interpreted as a nested sub-key. Let’s illustrate the behavior with a
second example. There is the following config parameter for roles_claim_name (by the way it was
the default value if you didn’t configured it):

roles_claim_name = _couchdb.roles

Note: CouchDB doesn’t set any default or implicit value for roles_claim_path.

To migrate from roles_claim_name to roles_claim_path you need to change the parameter name
and escape the . to prevent CouchDB to read this as a nested JSON key.

roles_claim_path = _couchdb\.roles

Let’s assume your JWT token have the following data-payload for your couchdb roles claim:

{

"_couchdb.roles": [
"accounting-role",
"view-role"

]

}

If you did everything right, the response from the _session endpoint should look something like this:

GET /_session HTTP/1.1
Host: localhost:5984
Authorization: Bearer <JWT token>

HTTP/1.1 200 OK
Content-Type: application/json

"ok": true,
"userCtx": {
"name": "1234567890",
"roles": [
"accounting-role",
"view-role"

(continues on next page)

7.6. Authentication and Authorization 225

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"info": {

"authentication_handlers": [
"jwt",
"proxy",
"cookie",
"default"

1,

"authenticated":

}

jwt”

}

That’s all, you are done with the migration from roles_claim_name to roles_claim_path Easy,

isn’t it?

7.7 Compaction

7.7.1 Database Compaction Options

[database_compaction]

doc_buffer_size
Specifies the copy buffer’s maximum size in bytes:

[database_compaction]
doc_buffer_size = 524288

checkpoint_after

Triggers a checkpoint after the specified amount of bytes were successfully copied to the compacted

database:

[database_compaction]
checkpoint_after = 5242880

7.7.2 View Compaction Options

[view_compaction]

keyvalue_buffer_size
Specifies maximum copy buffer size in bytes used during compaction:

[view_compaction]
keyvalue_buffer_size = 2097152

226

Chapter 7. Configuration

Apache CouchDB®, Release 3.3.3

7.7.3 Compaction Daemon

CouchDB ships with an automated, event-driven daemon internally known as “smoosh” that continuously re-
prioritizes the database and secondary index files on each node and automatically compacts the files that will
recover the most free space according to the following parameters.

[smoosh]

db_channels
A comma-delimited list of channels that are sent the names of database files when those files are up-
dated. Each channel can choose whether to enqueue the database for compaction; once a channel has
enqueued the database, no additional channel in the list will be given the opportunity to do so.
view_channels
A comma-delimited list of channels that are sent the names of secondary index files when those files
are updated. Each channel can choose whether to enqueue the index for compaction; once a channel
has enqueued the index, no additional channel in the list will be given the opportunity to do so.
staleness
The number of minutes that the (expensive) priority calculation on an individual can be stale for before
it is recalculated. Defaults to 5.
cleanup_index_files
If set to true, the compaction daemon will delete the files for indexes that are no longer associated with
any design document. Defaults to false and probably shouldn’t be changed unless the node is running
low on disk space, and only after considering the ramifications.
wait_secs
The time a channel waits before starting compactions to allow time to observe the system and make a
smarter decision about what to compact first. Hardly ever changed from the default of 30 (seconds).

[smoosh.<channel>]

The following settings control the resource allocation for a given compaction channel.

capacity
The maximum number of items the channel can hold (lowest priority item is removed to make
room for new items). Defaults to 9999.

concurrency

The maximum number of jobs that can run concurrently in this channel. Defaults to 1.

from

to

The time period during which this channel is allowed to execute compactions. The value for
each of these parameters must obey the format HH:MM with HH in [0..23] and MM in [0..59].
Each channel listed in the top-level daemon configuration continuously builds its priority queue
regardless of the period defined here. The default is to allow the channel to execute compactions
all the time.

strict_window

If set to true, any compaction that is still running after the end of the allowed perio will be
suspended, and then resumed during the next window. It defaults to false, in which case any
running compactions will be allowed to finish, but no new ones will be started.

There are also several settings that collectively control whether a channel will enqueue a file for compaction and
how it prioritizes files within its queue:

max_priority

Each item must have a priority lower than this to be enqueued. Defaults to infinity.

7.7. Compaction 227

Apache CouchDB®, Release 3.3.3

max_size
The item must be no larger than this many bytes in length to be enqueued. Defaults to infinity.
min_priority
The item must have a priority at least this high to be enqueued. Defaults to 5.0 for ratio and 16
MB for slack.
min_changes
The minimum number of changes since last compaction before the item will be enqueued. De-
faults to 0. Currently only works for databases.
min_size
The item must be at least this many bytes in length to be enqueued. Defaults to Imb (1048576
bytes).
priority

The method used to calculate priority. Can be ratio (calculated as sizes.file/sizes.active)
or slack (calculated as sizes.file - sizes.active). Defaults to ratio.

7.8 Background Indexing

Secondary indexes in CouchDB are not updated during document write operations. In order to avoid high latencies
when reading indexes following a large block of writes, CouchDB automatically kicks off background jobs to keep
secondary indexes “warm”. The daemon responsible for this process is internally known as “ken” and can be
configured using the following settings.

[ken]

batch_channels

This setting controls the number of background view builds that can be running in parallel at any given
time. The default is 20.

incremental_channels

It is possible for all the slots in the normal build system to be occupied by long-running index re-
builds (e.g. if new design documents are posted to several databases simultaneously). In order to avoid
already-built indexes from falling behind when this occurs, CouchDB will allow for a number of short
background indexing jobs to run even when all slots are full. This setting controls how many additional
short jobs are allowed to run concurrently with the main jobs. The default is 80.

max_incremental_updates

CouchDB estimates whether an indexing job is “incremental” or not by looking at the difference in
sequence numbers between the current index and the main database. If the difference is larger than the
threshold defined here the background job will only be allowed to run in the main queue. Defaults to
1000.

[ken.ignore]

Entries in this configuration section can be used to tell the background indexer to skip over specific database shard
files. The key must be the exact name of the shard with the . couch suffix omitted, for example:

[ken.ignore]
shards/00000000-1fffffff/mydb.1567719095 = true

Note: In case when you’d like to skip all views from a ddoc, you may add autoupdate: falseto
the ddoc. All views of that ddoc will then be skipped.

More at PUT /{db}/_design/{ddoc}.

228 Chapter 7. Configuration

Apache CouchDB®, Release 3.3.3

7.9 10 Queue

CouchDB has an internal subsystem that can prioritize IO associated with certain classes of operations. This
subsystem can be configured to limit the resources devoted to background operations like internal replication and
compaction according to the settings described below.

[ioq]

concurrency

Specifies the maximum number of concurrent in-flight IO requests that the queueing system will sub-
mit:

[ioq]
concurrency = 10

ratio

The fraction of the time that a background IO request will be selected over an interactive 10 request
when both queues are non-empty:

[ioq]
ratio = 0.01

[ioq.bypass]
System administrators can choose to submit specific classes of 10 directly to the underlying file descriptor
or OS process, bypassing the queues altogether. Installing a bypass can yield higher throughput and lower
latency, but relinquishes some control over prioritization. The following classes are recognized:
os_process
Messages on their way to an external process (e.g., couchjs).

read
Disk IO fulfilling interactive read requests.

write
Disk IO required to update a database.

view_update
Disk IO required to update views and other secondary indexes.

shard_sync
Disk 10 issued by the background replication processes that fix any inconsistencies between shard
copies.

compaction
Disk IO issued by compaction jobs.

reshard
Disk 10O issued by resharding jobs.
Without any configuration CouchDB will enqueue all classes of 10. The default.ini configuration file that

ships with CouchDB activates a bypass for each of the interactive 10 classes and only background IO goes
into the queueing system:

[ioq.bypass]
os_process = true
read = true

write = true
view_update = true
shard_sync = false
compaction = false
reshard = false

7.9. 10 Queue 229

Apache CouchDB®, Release 3.3.3

7.9.1 Recommendations

The default configuration protects against excessive IO from background operations like compaction disrupting the
latency of interactive operations, while maximizing the overall IO throughput devoted to those interactive requests.
There are certain situations where this configuration could be sub-optimal:

* An administrator may want to devote a larger portion of the overall IO bandwidth to compaction in order to
stay ahead of the incoming write load. In this it may be necessary to disable the bypass for write (to help
with database compaction) and/or view_update (to help with view index compaction) and then increase
the ratio to give compaction a higher priority.

* A server with a large number of views that do not need to be comlpetely up-to-date may benefit from removing
the bypass on view_update in order to optimize the latency for regular document read and write operations,
and build the views during quieter periods.

7.10 Logging

7.10.1 Logging options

[log]
CouchDB logging configuration.

writer

Current writers include:
e stderr: Logs are sent to stderr.
e file: Logs are sent to the file set in log file.
* syslog: Logs are sent to the syslog daemon.
* journald: Logs are sent to stderr without timestamp and log levels compatible with sd-daemon.

You can also specify a full module name here if implement your own writer:

[log]
writer = stderr

file
Specifies the location of file for logging output. Only used by the file writer:

[log]
file = /var/log/couchdb/couch.log

This path should be readable and writable for user that runs CouchDB service (couchdb by default).

write_buffer

Specifies the size of the file log write buffer in bytes, to enable delayed log writes. Only used by the
filewriter:

[log]
write_buffer = 0

write_delay

Specifies the wait in milliseconds before committing logs to disk, to enable delayed log writes. Only
used by the file writer:

[log]
write_delay = 0

230 Chapter 7. Configuration

Apache CouchDB®, Release 3.3.3

level
Changed in version 1.3: Added warning level.

Logging level defines how verbose and detailed logging will be:

[log]
level = info

Available levels:
* debug: Detailed debug logging.

e info: Informative logging. Includes HTTP requests headlines, startup of an external processes
etc.

* notice

* warning or warn: Warning messages are alerts about edge situations that may lead to errors. For
instance, compaction daemon alerts about low or insufficient disk space at this level.

e error or err: Error level includes only things that go wrong, like crash reports and HTTP error
responses (5xx codes).

e critical or crit

e alert

* emergency or emerg

* none: Disables logging any messages.

include_sasl
Includes SASL information in logs:

[log]
include_sasl = true

syslog_host

Note: Setting syslog_host is mandatory for syslog to work!

Specifies the syslog host to send logs to. Only used by the syslog writer:

[1og]
syslog_host = localhost

syslog_port
Specifies the syslog port to connect to when sending logs. Only used by the syslog writer:

[1log]
syslog_port = 514

syslog_appid
Specifies application name to the syslog writer:

[1og]
syslog_appid = couchdb

syslog_facility
Specifies the syslog facility to use with the syslog writer:

7.10. Logging 231

http://www.erlang.org/doc/apps/sasl/

Apache CouchDB®, Release 3.3.3

[logl
syslog_facility = local2

Note: CouchDB’s syslog only knows how to use UDP logging. Please ensure that your syslog server
has UDP logging enabled.

For rsyslog you can enable the UDP module imudp in /etc/rsyslog.conf:

provides UDP syslog reception
module (load="imudp")
input (type="imudp" port="514")

7.11 Replicator

7.11.1 Replicator Database Configuration

[replicator]

max_jobs
New in version 2.1.

Number of actively running replications. This value represents the threshold to trigger the automatic
replication scheduler. The system will check every interval milliseconds how many replication jobs
are running, and if there are more than max_jobs active jobs, the scheduler will pause-and-restart up
to max_churn jobs in the scheduler queue. Making this value too high could cause performance issues,
while making it too low could mean replications jobs might not have enough time to make progress
before getting unscheduled again. This parameter can be adjusted at runtime and will take effect during
next rescheduling cycle:

[replicator]
max_jobs = 500

interval
New in version 2.1.

Scheduling interval in milliseconds. During each reschedule cycle the scheduler might start or stop up
to max_churn number of jobs:

[replicator]
interval = 60000

max_churn
New in version 2.1.
Maximum number of replication jobs to start and stop during rescheduling. This parameter, along with

interval, defines the rate of job replacement. During startup, however, a much larger number of jobs
could be started (up to max_jobs) in a short period of time:

[replicator]
max_churn = 20

max_history

Maximum number of events recorded for each job. This parameter defines an upper bound on the
consecutive failure count for a job, and in turn the maximum backoff factor used when determining the
delay before the job is restarted. The longer the length of the crash count, the longer the possible length
of the delay:

232

Chapter 7. Configuration

Apache CouchDB®, Release 3.3.3

[replicator]
max_history = 20

update_docs
New in version 2.1.

When set to true replicator will update replication document with error and triggered states. This
approximates pre-2.1 replicator behavior:

[replicator]
update_docs = false

worker_batch_size

With lower batch sizes checkpoints are done more frequently. Lower batch sizes also reduce the total
amount of used RAM memory:

[replicator]
worker_batch_size = 500

worker_processes

More worker processes can give higher network throughput but can also imply more disk and network
10:

[replicator]
worker_processes = 4

http_connections

Maximum number of HTTP connections per replication:

[replicator]
http_connections = 20

connection_timeout

HTTP connection timeout per replication. This is divided by three (3) when the replicator makes
changes feed requests. Even for very fast/reliable networks it might need to be increased if a remote
database is too busy:

[replicator]
connection_timeout = 30000

retries_per_request

Changed in version 2.1.1.

If a request fails, the replicator will retry it up to N times. The default value for N is 5 (before version
2.1.1 it was 10). The requests are retried with a doubling exponential backoff starting at 0.25 seconds.
So by default requests would be retried in 0.25, 0.5, 1, 2, 4 second intervals. When number of retires
is exhausted, the whole replication job is stopped and will retry again later:

[replicator]
retries_per_request = 5

socket_options

Some socket options that might boost performance in some scenarios:
¢ {nodelay, boolean()}
¢ {sndbuf, integer()}

¢ {recbuf, integer(Q)}

7.11. Replicator 233

Apache CouchDB®, Release 3.3.3

e {priority, integer()}

See the inet Erlang module’s man page for the full list of options:

[replicator]
socket_options = [{keepalive, true}, {nodelay, false}]

valid_socket_options
New in version 3.3.
Valid socket options. Options not in this list are ignored. Most of those options are low level and setting

some of them may lead to unintended or unpredictable behavior. See inet Erlang docs for the full list
of options:

[replicator]
valid_socket_options = buffer,keepalive,nodelay,priority,recbuf, sndbuf

ibrowse_options

New in version 3.3.3: A non-default ibrowse setting is needed to support IPV6-only replication sources
or targets:

e {prefer_ipv6, boolean()}

See the ibrowse site for the full list of options:

[replicator]
ibrowse_options = [{prefer_ipv6, true}]

valid_ibrowse_options

New in version 3.3.3.

Valid ibrowse options. Options not in this list are ignored:

[replicator]
valid_ibrowse_options = prefer_ipvé6

valid_endpoint_protocols

New in version 3.3.

Valid replication endpoint protocols. Replication jobs with endpoint urls not in this list will fail to
run:

[replicator]
valid_endpoint_protocols = http,https

valid_proxy_protocols

New in version 3.3.

Valid replication proxy protocols. Replication jobs with proxy urls not in this list will fail to run:

[replicator]
valid_proxy_protocols = http,https,socks5

checkpoint_interval

New in version 1.6.

Defines replication checkpoint interval in milliseconds. Replicator will requests from the Source
database at the specified interval:

[replicator]
checkpoint_interval = 5000

234 Chapter 7. Configuration

http://www.erlang.org/doc/man/inet.html#setopts-2
http://www.erlang.org/doc/man/inet.html#setopts-2
https://github.com/cmullaparthi/ibrowse/

Apache CouchDB®, Release 3.3.3

Lower intervals may be useful for frequently changing data, while higher values will lower bandwidth
and make fewer requests for infrequently updated databases.

use_checkpoints

New in version 1.6.

If use_checkpoints is set to true, CouchDB will make checkpoints during replication and at the
completion of replication. CouchDB can efficiently resume replication from any of these checkpoints:

[replicator]
use_checkpoints = true

Note: Checkpoints are stored in local documents on both the source and target databases (which
requires write access).

Warning: Disabling checkpoints is not recommended as CouchDB will scan the Source
database’s changes feed from the beginning.

use_bulk_get
New in version 3.3.
If use_bulk_get is true, CouchDB will attempt to use the _bulk_get HTTP API endpoint to fetch
documents from the source. Replicator should automatically fall back to individual doc GETs on on
error; however, in some cases it may be useful to prevent spending time attempting to call _bulk_get
altogether.

cert_file

Path to a file containing the user’s certificate:

[replicator]
cert_file = /full/path/to/server_cert.pem

key_file
Path to file containing user’s private PEM encoded key:

[replicator]
key_file = /full/path/to/server_key.pem

password

String containing the user’s password. Only used if the private key file is password protected:

[replicator]
password = somepassword

verify_ssl_certificates

Set to true to validate peer certificates:

[replicator]
verify_ssl_certificates = false

ssl_trusted_certificates_file

File containing a list of peer trusted certificates (in the PEM format):

[replicator]
ssl_trusted_certificates_file = /etc/ssl/certs/ca-certificates.crt

711,

Replicator 235

Apache CouchDB®, Release 3.3.3

ssl_certificate_max_depth

Maximum peer certificate depth (must be set even if certificate validation is off):

[replicator]
ssl_certificate_max_depth = 3

auth_plugins

New in version 2.2.

List of replicator client authentication plugins. Plugins will be tried in order and the first to initialize
successfully will be used. By default there are two plugins available: couch_replicator_auth_session
implementing session (cookie) authentication, and couch_replicator_auth_noop implementing basic
authentication. For backwards compatibility, the no-op plugin should be used at the end of the plugin
list:

[replicator]
auth_plugins = couch_replicator_auth_session,couch_replicator_auth_noop

usage_coeff

New in version 3.2.0.

Usage coeflicient decays historic fair share usage every scheduling cycle. The value must be between
0.0 and 1.0. Lower values will ensure historic usage decays quicker and higher values means it will be
remembered longer:

[replicator]
usage_coeff = 0.5

priority_coeff

New in version 3.2.0.

Priority coefficient decays all the job priorities such that they slowly drift towards the front of the run
queue. This coefficient defines a maximum time window over which this algorithm would operate. For
example, if this value is too small (0.1), after a few cycles quite a few jobs would end up at priority
0, and would render this algorithm useless. The default value of 0.98 is picked such that if a job ran
for one scheduler cycle, then didn’t get to run for 7 hours, it would still have priority > 0. 7 hours was
picked as it was close enough to 8 hours which is the default maximum error backoff interval:

[replicator]
priority_coeff = 0.98

7.11.2 Fair Share Replicator Share Allocation

[replicator.shares]

$replicator_db

New in version 3.2.0.

Fair share configuration section. Higher share values results in a higher chance that jobs from that db
get to run. The default value is 100, minimum is 1 and maximum is 1000. The configuration may be
set even if the database does not exist.

In this context the option $replicator_db acts as a placeholder for your replicator database name.
The default replicator database is _replicator. Additional replicator databases can be created. To
be recognized as such by the system, their database names should end with /_replicator. See the
Replicator Database section for more info.

236

Chapter 7. Configuration

Apache CouchDB®, Release 3.3.3

[replicator.shares]
_replicator = 50
foo/_replicator
bar/_replicator

25
25

7.12 Query Servers

7.12.1 Query Servers Definition

Changed in version 2.3: Changed configuration method for Query Servers and Native Query Servers.

CouchDB delegates computation of design documents functions to external query servers. The external query
server is a special OS process which communicates with CouchDB over standard input/output using a very simple
line-based protocol with JSON messages.

An external query server may be defined with environment variables following this pattern:

COUCHDB_QUERY_SERVER_LANGUAGE="PATH ARGS"

Where:

* LANGUAGE: is a programming language which code this query server may execute. For instance, there are
PYTHON, RUBY, CLOJURE and other query servers in the wild. This value in lowercase is also used for
ddoc field 1language to determine which query server processes the functions.

Note, that you may set up multiple query servers for the same programming language, but you have to name
them differently (like PYTHONDEYV etc.).

* PATH: is a system path to the executable binary program that runs the query server.
* ARGS: optionally, you may specify additional command line arguments for the executable PATH.

The default query server is written in JavaScript, running via Mozilla SpiderMonkey. It requires no special envi-
ronment settings to enable, but is the equivalent of these two variables:

COUCHDB_QUERY_SERVER_JAVASCRIPT="/opt/couchdb/bin/couchjs /opt/couchdb/share/server/
—main. js"

COUCHDB_QUERY_SERVER_COFFEESCRIPT="/opt/couchdb/bin/couchjs /opt/couchdb/share/server/
—main-coffee. js"

By default, couchjs limits the max runtime allocation to 64MiB. If you run into out of memory issue in your ddoc
functions, you can adjust the memory limitation (here, increasing to 512 MiB):

COUCHDB_QUERY_SERVER_JAVASCRIPT="/usr/bin/couchjs -S 536870912 /usr/share/server/main.
‘—)js"

For more info about the available options, please consult couchjs -h.

Note: CouchDB versions 3.0.0 to 3.2.2 included a performance regression for custom reduce functions. CouchDB
3.3.0 and later come with an experimental fix to this issue that is included in a separate . js file.

To enable the fix, you need to define a custom COUCHDB_QUERY_SERVER_JAVASCRIPT environment variable as
outlined above. The path to couchjs needs to remain the same as you find it on your couchdb file, and the path
tomain. js needs to be set to /path/to/couchdb/share/server/main-ast-bypass.js.

With a default installation on Linux systems, this is going to be COUCHDB_QUERY_SERVER_JAVASCRIPT="/opt/
couchdb/bin/couchjs /opt/couchdb/share/server/main-ast-bypass.js"

7.12. Query Servers 237

https://spidermonkey.dev/

Apache CouchDB®, Release 3.3.3

See also:

The Mango Query Server is a declarative language that requires no programming, allowing for easier indexing and
finding of data in documents.

The Native Erlang Query Server allows running ddocs written in Erlang natively, bypassing stdio communication
and JSON serialization/deserialization round trip overhead.

7.12.2 Query Servers Configuration

[query_server_config]

commit_£freq

Specifies the delay in seconds before view index changes are committed to disk. The default value is
5:

[query_server_config]
commit_freq = 5

os_process_limit
Hard limit on the number of OS processes usable by Query Servers. The default value is 100:

[query_server_config]
os_process_limit = 100

Setting os_process_limit too low can result in starvation of Query Servers, and manifest in
os_process_timeout errors, while setting it too high can potentially use too many system resources.
Production settings are typically 10-20 times the default value.

os_process_soft_limit

Soft limit on the number of OS processes usable by Query Servers. The default value is 100:

[query_server_config]
os_process_soft_limit = 100

Idle OS processes are closed until the total reaches the soft limit.

For example, if the hard limit is 200 and the soft limit is 100, the total number of OS processes will
never exceed 200, and CouchDB will close all idle OS processes until it reaches 100, at which point it
will leave the rest intact, even if some are idle.

reduce_limit

Controls Reduce overflow error that raises when output of reduce functions is too big:

[query_server_config]
reduce_limit = true

Normally, you don’t have to disable (by setting false value) this option since main propose of reduce
functions is to reduce the input.

238 Chapter 7. Configuration

Apache CouchDB®, Release 3.3.3

7.12.3 Native Erlang Query Server

[native_query_servers]

Warning: Due to security restrictions, the Erlang query server is disabled by default.

Unlike the JavaScript query server, the Erlang one does not run in a sandbox mode. This means that
Erlang code has full access to your OS, file system and network, which may lead to security issues. While
Erlang functions are faster than JavaScript ones, you need to be careful about running them, especially
if they were written by someone else.

CouchDB has a native Erlang query server, allowing you to write your map/reduce functions in Erlang.

First, you’ll need to edit your local.ini to include a [native_query_servers] section:

[native_query_servers]
enable_erlang_query_server = true

To see these changes you will also need to restart the server.

Let’s try an example of map/reduce functions which count the total documents at each number of revisions
(there are x many documents at version “1”, and y documents at “2”... etc). Add a few documents to the
database, then enter the following functions as a view:

%% Map Function

fun({Doc}) ->
<<K,_/binary>> = proplists:get_value(<<"_rev">>, Doc, null),
V = proplists:get_value(<<"_id">>, Doc, null),
Emit(<<K>>, V)

end.

%% Reduce Function
fun(Keys, Values, ReReduce) -> length(Values) end.

If all has gone well, after running the view you should see a list of the total number of documents at each
revision number.

Additional examples are on the users @couchdb.apache.org mailing list.

7.12.4 Search

CouchDB’s search subsystem can be configured via the dreyfus configuration section.

[dreyfus]

name
The name and location of the Clouseau Java service required to enable Search functionality. Defaults
to clouseau@127.0.0.1.
retry_limit
CouchDB will try to reconnect to Clouseau using a bounded exponential backoff with the following
number of iterations. Defaults to 5.
limit
The number of results returned from a global search query if no limit is specified. Defaults to 25.
limit_partitions

The number of results returned from a search on a partition of a database if no limit is specified. Defaults
to 2000.

7.12. Query Servers 239

https://lists.apache.org/thread.html/9b5f2837bd32189385bb82eee44aec243f2ecacc6e907ffe0e1e03d3@1360091211@%3Cuser.couchdb.apache.org%3E

Apache CouchDB®, Release 3.3.3

max_limit

The maximum number of results that can be returned from a global search query (or any search query
on a database without user-defined partitions). Attempts to set 71imit=N higher than this value will
be rejected. Defaults to 200.

max_limit_partitions

The maximum number of results that can be returned when searching a partition of a database. Attempts
to set 71imit=N higher than this value will be rejected. If this config setting is not defined, CouchDB
will use the value of max_limit instead. If neither is defined, the default is 2000.

7.12.5 Mango

Mango is the Query Engine that services the _find, endpoint.
[mango]

index_all_disabled

Set to true to disable the “index all fields” text index. This can lead to out of memory issues when
there are documents with nested array fields. Defaults to false.:

[mango]
index_all_disabled = false

default_limit

Sets the default number of results that will be returned in a _find response. Individual requests can
override this by setting 1imit directly in the query parameters. Defaults to 25.:

[mango]
default_limit = 25

index_scan_warning_threshold

This sets the ratio between documents scanned and results matched that will generate a warning in the
_find response. For example, if a query requires reading 100 documents to return 10 rows, a warning
will be generated if this value is 10.

Defaults to 10. Setting the value to 0 disables the warning.:

[mango]
index_scan_warning_threshold = 10

7.13 Miscellaneous Parameters

7.13.1 Configuration of Attachment Storage

[attachments]

compression_level

Defines zlib compression level for the attachments from 1 (lowest, fastest) to 9 (highest, slowest). A
value of ® disables compression:

[attachments]
compression_level = 8

compressible_types

Since compression is ineffective for some types of files, it is possible to let CouchDB compress only
some types of attachments, specified by their MIME type:

240 Chapter 7. Configuration

Apache CouchDB®, Release 3.3.3

[attachments]

—application/xml

compressible_types = text/*, application/javascript, application/json,.

7.13.2 Statistic Calculation

[stats]

interval
Interval between gathering statistics in seconds:

[stats]
interval = 10

7.13.3 UUIDs Configuration

[uuids]

algorithm
Changed in version 1.3: Added utc_id algorithm.

CouchDB provides various algorithms to generate the UUID values that are used for document _id’s

by default:

[uuids]
algorithm = sequential

Auvailable algorithms:

e random: 128 bits of random awesome. All awesome, all the time:

{
"uuids": [
"5fcbbf2cb171bld5c3bc6df3d4affb32",
"9115e0942372a87a977f1caf30b2ac29",
"3840b51b0Ob81b46cab99384d5cd106e3",
"b848dbdeb422164babf2705ac18173el",
"b7a8566af7e0fc02404bb676b47c3bf7",
"a006879afdcae324d70e925c420c860d4",
"5f7716ee487cc4083545d4ca®2cd45d4",
"35fdd1c8346¢c22ccc43cc45¢cd632e6d6”,
"97bbdb4alc7166682dc0®26elac97a64c",
"eb242b506a6ae330bda6969bb2677079"

}

* sequential: Monotonically increasing ids with random increments. The first 26 hex characters
are random, the last 6 increment in random amounts until an overflow occurs. On overflow, the

random prefix is regenerated and the process starts over.

{
"uuids": [
"4e17c12963f4beel®ebec90da’54804894",
"4e17c12963f4bee®ebec90da5480512f",
"4e17c12963f4beelebec90da54805c25",
"4e17c12963f4bee®ebec90da54806bal”,

(continues on next page)

7.13. Miscellaneous Parameters

241

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"4e17c12963f4beele6ec90da548072b3",
"4e17c12963f4beele6ec90da54807609",
"4e17c12963f4bee®eb6ec90da’54807718",
"4e17c12963f4beelebec90da’54807754",
"4e17c12963f4beelebec90da’54807e5d",
"4e17c12963f4beel®e6ec90da54808d28"

}

e utc_random: The time since Jan 1, 1970 UTC, in microseconds. The first 14 characters are the
time in hex. The last 18 are random.

{
"uuids": [
"04dd32b3af699659b6db9486a9c58c62",
"04dd32b3af69bblc2ac7ebfee®a50d88",
"04dd32b3af69d8591b99a8e86a76e0fb",
"04dd32b3af69f4a18a76efd89867£f4f4",
"04dd32b3af6al1£7925001274bbfde952",
"04dd32b3af6a3fe8eadbl120ed906a57f",
"04dd32b3af6a5b5c518809d3d4b76654",
"04dd32b3af6a78f6ab32f1e928593c73",
"04dd32b3af6a99916c665d6bb£857475",
"04dd32b3af6ab558dd3f2c®afach7d66"

}

e utc_id: The time since Jan 1, 1970 UTC, in microseconds, plus the utc_id_suffix string. The
first 14 characters are the time in hex. The uuids/utc_id_suffix string value is appended to
these.

{
"uuids": [
"04dd32bd5eabcc@mycouch",
"04dd32bd5eabee@mycouch",
"04dd32bd5eacO®5@mycouch”,
"04dd32bd5eac28@mycouch",
"04dd32bd5eac43@mycouch”,
"04dd32bd5eac58@mycouch",
"04dd32bd5eac6e@mycouch",
"04dd32bd5eac84@mycouch",
"04dd32bd5eac98@mycouch",
"04dd32bd5eacad@mycouch"

Note: Impact of UUID choices: the choice of UUID has a significant impact on the layout of the

B-tree, prior to compaction.

For example, using a sequential UUID algorithm while uploading a large batch of documents will avoid
the need to rewrite many intermediate B-tree nodes. A random UUID algorithm may require rewriting
intermediate nodes on a regular basis, resulting in significantly decreased throughput and wasted disk

space space due to the append-only B-tree design.

It is generally recommended to set your own UUIDs, or use the sequential algorithm unless you have a
specific need and take into account the likely need for compaction to re-balance the B-tree and reclaim

242

Chapter 7. Configuration

Apache CouchDB®, Release 3.3.3

wasted space.

utc_id_suffix
New in version 1.3.

The utc_id_suffix value will be appended to UUIDs generated by the utc_id algorithm. Replicat-
ing instances should have unique utc_id_suffix values to ensure uniqueness of utc_id ids.

[uuid]
utc_id_suffix = my-awesome-suffix

max_count

New in version 1.5.1.

No more than this number of UUIDs will be sent in a single request. If more UUIDs are requested, an
HTTP error response will be thrown.

[uuid]
max_count = 1000

7.13.4 Vendor information

[vendor]

New in version 1.3.

CouchDB distributors have the option of customizing CouchDB’s welcome message. This is returned when
requesting GET /.

[vendor]
name = The Apache Software Foundation
version = 1.5.0

7.13.5 Content-Security-Policy

[cspl]
You can configure Content-Security-Policy header for Fauxton, attachments and show/list functions
separately. See MDN Content-Security-Policy for more details on CSP.
utils_enable
Enable the sending of the header Content-Security-Policy for /_utils. Defaults to true:

[cspl
utils_enable = true

utils_header_value

Specifies the exact header value to send. Defaults to:

[cspl
utils_header_value = default-src 'self'; img-src 'self’; font-src *; script-
—src 'self' 'unsafe-eval'; style-src 'self' 'unsafe-inline’;

attachments_enable
Enable sending the Content-Security-Policy header for attachments:

[cspl
attachments_enable = true

7.13. Miscellaneous Parameters 243

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

Apache CouchDB®, Release 3.3.3

attachments_header_value

Specifies the exact header value to send. Defaults to:

[cspl
attachments_header_value = sandbox

showlist_enable

Enable sending the Content-Security-Policy header for show and list functions:

[csp]
showlist_enable = true

showlist_header_value

Specifies the exact header value to send. Defaults to:

[csp]
showlist_header_value = sandbox

The pre 3.2.0 behaviour is still honoured, but we recommend updating to the new format.
Experimental support of CSP headers for /_utils (Fauxton).

enable
Enable the sending of the Header Content-Security-Policy:

[cspl]
enable = true

header_value

You can change the default value for the Header which is sent:

[csp]
header_value = default-src 'self'; img-src *; font-src *;

7.13.6 Configuration of Database Purge

[purge]

max_document_id_number

New in version 3.0.

Sets the maximum number of documents allowed in a single purge request:

[purge]
max_document_id_number = 100

max_revisions_number

New in version 3.0.

Sets the maximum number of accumulated revisions allowed in a single purge request:

[purge]
max_revisions_number = 1000

index_lag_warn_seconds

New in version 3.0.

Sets the allowed duration when index is not updated for local purge checkpoint document. Default is
24 hours:

244 Chapter 7. Configuration

Apache CouchDB®, Release 3.3.3

[purge]
index_lag_warn_seconds = 86400

7.13.7 Configuration of Prometheus Endpoint

[prometheus]

additional_port

New in version 3.2.

Sets whether or not to create a separate, non-authenticated port (default is false):

[prometheus]
additional_port = true

bind_address

New in version 3.2.

The IP address to bind:

[prometheus]
bind_address = 127.0.0.1

port

New in version 3.2.

The port on which clients can query prometheus endpoint data without authentication:

[prometheus]
port = 17986

7.14 Resharding

7.14.1 Resharding Configuration

[resharding]

max_jobs

Maximum number of resharding jobs per cluster node. This includes completed, failed, and running
jobs. If the job appears in the _reshard/jobs HTTP API results it will be counted towards the limit.
When more than max_jobs jobs have been created, subsequent requests will start to fail with the
max_jobs_exceeded error:

[reshard]
max_jobs = 48

max_history

Each resharding job maintains a timestamped event log. This setting limits the maximum size of that
log:

[reshard]
max_history = 20

7.14. Resharding 245

Apache CouchDB®, Release 3.3.3

max_retries

How many times to retry shard splitting steps if they fail. For example, if indexing or topping off fails,
it will be retried up to this many times before the whole resharding job fails:

[reshard]
max_retries = 1

retry_interval_sec

How long to wait between subsequent retries:

[reshard]
retry_interval_sec = 10

delete_source

Indicates if the source shard should be deleted after resharding has finished. By default, it is true as
that would recover the space utilized by the shard. When debugging or when extra safety is required,
this can be switched to false:

[reshard]
delete_source = true

update_shard_map_timeout_sec

How many seconds to wait for the shard map update operation to complete. If there is a large number
of shard db changes waiting to finish replicating, it might be beneficial to increase this timeout:

[reshard]
update_shard_map_timeout_sec = 60

source_close_timeout_sec

How many seconds to wait for the source shard to close. “Close” in this context means that client
requests which keep the database open have all finished:

[reshard]
source_close_timeout_sec = 600

require_node_param

Require users to specify a node parameter when creating resharding jobs. This can be used as a safety
check to avoid inadvertently starting too many resharding jobs by accident:

[reshard]
require_node_param = false

require_range_param

Require users to specify a range parameter when creating resharding jobs. This can be used as a safety
check to avoid inadvertently starting too many resharding jobs by accident:

[reshard]
require_range_param = false

246

Chapter 7. Configuration

CHAPTER
EIGHT

CLUSTER MANAGEMENT

As of CouchDB 2.0.0, CouchDB can be run in two different modes of operation:

 Standalone: In this mode, CouchDB’s clustering is unavailable. CouchDB’s HTTP-based replication
with other CouchDB installations remains available.

¢ Cluster: A cluster of CouchDB installations internally replicate with each other via optimized network
connections. This is intended to be used with servers that are in the same data center. This allows for
database sharding to improve performance.

This section details the theory behind CouchDB clusters, and provides specific operational instructions on node,
database and shard management.

8.1 Theory

Before we move on, we need some theory.

As you see in etc/default.ini there is a section called [cluster]

[cluster]
q=2
n=3

¢ g - The number of shards.
* n - The number of copies there is of every document. Replicas.

When creating a database you can send your own values with request and thereby override the defaults in default.
ini.

The number of copies of a document with the same revision that have to be read before CouchDB returns with a
200 is equal to a half of total copies of the document plus one. It is the same for the number of nodes that need to
save a document before a write is returned with 201. If there are less nodes than that number, then 202 is returned.
Both read and write numbers can be specified with a request as r and w parameters accordingly.

We will focus on the shards and replicas for now.

A shard is a part of a database. It can be replicated multiple times. The more copies of a shard, the more you can
scale out. If you have 4 replicas, that means that all 4 copies of this specific shard will live on at most 4 nodes.
No node can have more than one copy of each shard replica. The default for CouchDB since 3.0.0 is g=2 and n=3,
meaning each database (and secondary index) is split into 2 shards, with 3 replicas per shard, for a total of 6 shard
replica files. For a CouchDB cluster only hosting a single database with these default values, a maximum of 6
nodes can be used to scale horizontally.

Replicas add failure resistance, as some nodes can be offline without everything crashing down.
* n=1 All nodes must be up.
* n=2 Any 1 node can be down.

* n=3 Any 2 nodes can be down.

247

Apache CouchDB®, Release 3.3.3

e etc

Computers go down and sysadmins pull out network cables in a furious rage from time to time, so using n<2 is
asking for downtime. Having too high a value of n adds servers and complexity without any real benefit. The sweet
spot is at n=3.

Say that we have a database with 3 replicas and 4 shards. That would give us a maximum of 12 nodes: 4*3=12.
We can lose any 2 nodes and still read and write all documents.

What happens if we lose more nodes? It depends on how lucky we are. As long as there is at least one copy of
every shard online, we can read and write all documents.

So, if we are very lucky then we can lose 8 nodes at maximum.

8.2 Node Management

8.2.1 Adding a node

Gotohttp://serverl:5984/_membership to see the name of the node and all the nodes it is connected to and
knows about.

curl -X GET "http://XXX.XXX.XXX.XxxX:5984/_membership" --user admin-user

"all_nodes": [
"nodel@xxx.xXXX.Xxx.xxx"],

"cluster_nodes": [
"nodel@xxXx.XXX.XXX.xXxXx"]

}

¢ all_nodes are all the nodes that this node knows about.

e cluster_nodes are the nodes that are connected to this node.
To add a node simply do:

curl -X PUT "http://xxxX.XxXx.xxX.xxx/_node/_local/_nodes/node2@yyy.yyy.yyy.yyy" -d {}

Now look at http://serverl:5984/_membership again.

{
"all_nodes": [
"nodel@xxx.XXX.XXX.xxx",
"node2@yyy.yyy.yyy.yyy"
1,
"cluster_nodes": [
"nodel@xxx.xXXX.XXX.XxXx",

"node2@yyy.yyy.yyy.yyy"

And you have a 2 node cluster :)

http://yyy.yyy.yyy.yyy:5984/_membership will show the same thing, so you only have to add a node once.

248 Chapter 8. Cluster Management

Apache CouchDB®, Release 3.3.3

8.2.2 Removing a node

Before you remove a node, make sure that you have moved all shards away from that node.

To remove node2 from server yyy.yyy.yyy.yyy, you need to first know the revision of the document that signifies
that node’s existence:

curl "http://xxx.xxX.xxx.xxx/_node/_local/_nodes/node2@yyy.yyy.yyy.yyy"
{"_id":"node2@yyy.yyy.yyy.yyy","_rev":"1-967a00dff5e02add41820138abb3284d"}

With that _rev, you can now proceed to delete the node document:

curl -X DELETE "http://xxXx.xxX.xxX.xxXx/_node/_local/_nodes/node2@yyy.yyy.yyy.yyy?
—rev=1-967a00dff5e02add41820138abb3284d"

8.3 Database Management

8.3.1 Creating a database

This will create a database with 3 replicas and 8 shards.

curl -X PUT "http://xxx.xxXx.xxx.xxx:5984/database-name?n=3&q=8" --user admin-user

The database is in data/shards. Look around on all the nodes and you will find all the parts.

If you do not specify n and g the default will be used. The default is 3 replicas and 8 shards.

8.3.2 Deleting a database

curl -X DELETE "http://xXX.XXX.XXX.xxX:5984/database-name --user admin-user

8.3.3 Placing a database on specific nodes

In BigCouch, the predecessor to CouchDB 2.0’s clustering functionality, there was the concept of zones. CouchDB
2.0 carries this forward with cluster placement rules.

Warning: Use of the placement argument will override the standard logic for shard replica cardinality
(specified by [cluster] n.)

First, each node must be labeled with a zone attribute. This defines which zone each node is in. You do this by
editing the node’s document in the system _nodes database, which is accessed node-local via the GET /_node/
_local/_nodes/{node-name} endpoint.

Add a key value pair of the form:

"zone": "metro-dc-a"

Do this for all of the nodes in your cluster.

In your config file (local.ini or default.ini) on each node, define a consistent cluster-wide setting like:

[cluster]
placement = metro-dc-a:2,metro-dc-b:1

8.3. Database Management 249

Apache CouchDB®, Release 3.3.3

In this example, it will ensure that two replicas for a shard will be hosted on nodes with the zone attribute set to
metro-dc-a and one replica will be hosted on a new with the zone attribute set to metro-dc-b.

Note that you can also use this system to ensure certain nodes in the cluster do not host any replicas for newly
created databases, by giving them a zone attribute that does not appear in the [cluster] placement string.

8.4 Shard Management

8.4.1 Introduction

This document discusses how sharding works in CouchDB along with how to safely add, move, remove, and create
placement rules for shards and shard replicas.

A shard is a horizontal partition of data in a database. Partitioning data into shards and distributing copies of each
shard (called ‘““shard replicas” or just “replicas”) to different nodes in a cluster gives the data greater durability
against node loss. CouchDB clusters automatically shard databases and distribute the subsets of documents that
compose each shard among nodes. Modifying cluster membership and sharding behavior must be done manually.

Shards and Replicas

How many shards and replicas each database has can be set at the global level, or on a per-database basis. The
relevant parameters are g and n.

q is the number of database shards to maintain. n is the number of copies of each document to distribute. The default
value for n is 3, and for q is 2. With q=2, the database is split into 2 shards. With n=3, the cluster distributes three
replicas of each shard. Altogether, that’s 6 shard replicas for a single database.

In a 3-node cluster with g=8, each node would receive 8 shards. In a 4-node cluster, each node would receive 6
shards. We recommend in the general case that the number of nodes in your cluster should be a multiple of n, so
that shards are distributed evenly.

CouchDB nodes have a etc/default.ini file with a section named cluster which looks like this:

[cluster]
q=2
n=3

These settings specify the default sharding parameters for newly created databases. These can be overridden
in the etc/local.ini file by copying the text above, and replacing the values with your new defaults. If
[couch_peruser] q is set, that value is used for per-user databases. (By default, it is set to 1, on the assumption
that per-user dbs will be quite small and there will be many of them.) The values can also be set on a per-database
basis by specifying the g and n query parameters when the database is created. For example:

$ curl -X PUT "$COUCH_URL:5984/database-name?q=4&n=2"

This creates a database that is split into 4 shards and 2 replicas, yielding 8 shard replicas distributed throughout
the cluster.

250 Chapter 8. Cluster Management

https://en.wikipedia.org/wiki/Shard_(database_architecture)
../config/cluster.html

Apache CouchDB®, Release 3.3.3

Quorum

Depending on the size of the cluster, the number of shards per database, and the number of shard replicas, not
every node may have access to every shard, but every node knows where all the replicas of each shard can be found
through CouchDB’s internal shard map.

Each request that comes in to a CouchDB cluster is handled by any one random coordinating node. This coordinat-
ing node proxies the request to the other nodes that have the relevant data, which may or may not include itself. The
coordinating node sends a response to the client once a quorum of database nodes have responded; 2, by default.
The default required size of a quorum is equal to r=w=((n+1) /2) where r refers to the size of a read quorum, w
refers to the size of a write quorum, and n refers to the number of replicas of each shard. In a default cluster where
nis 3, ((n+1)/2) would be 2.

Note: Each node in a cluster can be a coordinating node for any one request. There are no special roles for nodes
inside the cluster.

The size of the required quorum can be configured at request time by setting the r parameter for document reads,
and the w parameter for document writes. The _view, _find, and _search endpoints read only one copy no matter
what quorum is configured, effectively making a quorum of 1 for these requests.

For example, here is a request that directs the coordinating node to send a response once at least two nodes have
responded:

$ curl "$COUCH_URL:5984/{db}/{doc}?r=2"

Here is a similar example for writing a document:

$ curl -X PUT "$COUCH_URL:5984/{db}/{doc}?w=2" -d "{...}'

Setting r or w to be equal to n (the number of replicas) means you will only receive a response once all nodes with
relevant shards have responded or timed out, and as such this approach does not guarantee ACIDic consistency.
Setting r or w to 1 means you will receive a response after only one relevant node has responded.

8.4.2 Examining database shards

There are a few API endpoints that help you understand how a database is sharded. Let’s start by making a new
database on a cluster, and putting a couple of documents into it:

$ curl -X PUT $COUCH_URL:5984/mydb

{"ok":true}

$ curl -X PUT $COUCH_URL:5984/mydb/joan -d '{"loves":"cats"}'
{"ok":true,"id":"joan","rev":"1-cc240d66a894a7ee7ad3160e69£9051f"}

$ curl -X PUT $COUCH_URL:5984/mydb/robert -d '{"loves":"dogs"}'
{"ok":true,"id":"robert","rev":"1-4032b428c7574a85bc04f1£f271bed46e"}

First, the top level /db endpoint will tell you what the sharding parameters are for your database:

$ curl -s $COUCH_URL:5984/db | jq .

{
"db_name": "mydb",

"cluster": {

"q": 8,
"n": 3,
"w': 2,
"r'": 2

s

(continues on next page)

8.4. Shard Management 251

https://en.wikipedia.org/wiki/Quorum_(distributed_computing)
https://en.wikipedia.org/wiki/ACID#Consistency

Apache CouchDB®, Release 3.3.3

(continued from previous page)

So we know this database was created with 8 shards (q=8), and each shard has 3 replicas (n=3) for a total of 24

shard replicas across the nodes in the cluster.

Now, let’s see how those shard replicas are placed on the cluster with the /db/_shards endpoint:

$ curl -s $COUCH_URL:5984/mydb/_shards | jq .

{
"shards": {
"00000000-1fffffff": [
"nodel@127.0.0.1",
"node2@127.0.0.1",
"node4@127.0.0.1"

1,
"20000000-3fffffff": [
"nodel@127.0.0.1",
"node2@127.0.0.1",
"node3@127.0.0.1"

1,
"40000000-5fffffff": [
"node2@127.0.0.1",
"node3@127.0.0.1",
"node4@127.0.0.1"

1,
"60000000-7fff£f£f": [
"nodel@127.0.0.1",
"node3@127.0.0.1",
"node4@127.0.0.1"

1,
"80000000-9fffffff": [
"nodel@127.0.0.1",
"node2@127.0.0.1",
"node4@127.0.0.1"

1,
"a0000000-bfffffff": [
"nodel@127.0.0.1",
"node2@127.0.0.1",
"node3@127.0.0.1"

]’
"cO000000-dfffffff": [
"node2@127.0.0.1",
"node3@127.0.0.1",
"node4@127.0.0.1"

1,
"e0000000-ffffffff": [
"nodel@127.0.0.1",
"node3@127.0.0.1",
"node4@127.0.0.1"

]
}
}

Now we see that there are actually 4 nodes in this cluster, and CouchDB has spread those 24 shard replicas evenly

across all 4 nodes.

We can also see exactly which shard contains a given document with the /db/_shards/doc endpoint:

252

Chapter 8. Cluster Management

Apache CouchDB®, Release 3.3.3

$ curl -s $COUCH_URL:5984/mydb/_shards/joan | jq .

{
"range": "e0000000-ffffffff",
"nodes": [
"nodel@127.0.0.1",
"node3@127.0.0.1",
"node4@127.0.0.1"
]
}
$ curl -s $COUCH_URL:5984/mydb/_shards/robert | jq .
{
"range": "60000000-7fffffff",
"nodes": [
"nodel@127.0.0.1",
"node3@127.0.0.1",
"node4@127.0.0.1"
1
}

CouchDB shows us the specific shard into which each of the two sample documents is mapped.

8.4.3 Moving a shard

When moving shards or performing other shard manipulations on the cluster, it is advisable to stop all resharding
jobs on the cluster. See Stopping Resharding Jobs for more details.

This section describes how to manually place and replace shards. These activities are critical steps when you
determine your cluster is too big or too small, and want to resize it successfully, or you have noticed from server
metrics that database/shard layout is non-optimal and you have some “hot spots” that need resolving.

Consider a three-node cluster with q=8 and n=3. Each database has 24 shards, distributed across the three nodes.
If you add a fourth node to the cluster, CouchDB will not redistribute existing database shards to it. This leads to
unbalanced load, as the new node will only host shards for databases created after it joined the cluster. To balance
the distribution of shards from existing databases, they must be moved manually.

Moving shards between nodes in a cluster involves the following steps:
0. Ensure the target node has joined the cluster.
1. Copy the shard(s) and any secondary index shard(s) onto the target node.
Set the target node to maintenance mode.
Update cluster metadata to reflect the new target shard(s).
Monitor internal replication o ensure up-to-date shard(s).
Clear the target node’s maintenance mode.

Update cluster metadata again fo remove the source shard(s)

NS R » N

Remove the shard file(s) and secondary index file(s) from the source node.

8.4. Shard Management 253

Apache CouchDB®, Release 3.3.3

Copying shard files

Note: Technically, copying database and secondary index shards is optional. If you proceed to the next step without
performing this data copy, CouchDB will use internal replication to populate the newly added shard replicas.
However, copying files is faster than internal replication, especially on a busy cluster, which is why we recommend
performing this manual data copy first.

Shard files live in the data/shards directory of your CouchDB install. Within those subdirectories are the shard
files themselves. For instance, for a g=8 database called abc, here is its database shard files:

data/shards/00000000-1fffffff/abc.
data/shards/20000000-3fffffff/abc.
data/shards/40000000-5fffffff/abc.
data/shards/60000000-7fffffff/abc.
data/shards/80000000-9fffffff/abc.
data/shards/a0000000-bfffffff/abc.
data/shards/c0000000-dfffffff/abc.
data/shards/e0000000-ffffffff/abc.

1529362187.
1529362187.
1529362187.
1529362187 .couch
1529362187.couch
1529362187.couch
1529362187 .couch
1529362187 .couch

couch
couch
couch

Secondary indexes (including JavaScript views, Erlang views and Mango indexes) are also sharded, and their shards
should be moved to save the new node the effort of rebuilding the view. View shards live in data/ . shards. For
example:

data/.shards

data/.shards/e0000000-ffffffff/ replicator.
data/.shards/e0000000-ffffffff/ replicator.
data/.shards/e0000000-ffffffff/ replicator.

-»3e823c2a4383ac0c18d4e574135a5b08.view
data/.shards/cO000000-dfffffff

data/.shards/c0000000-dfffffff/ replicator.
data/.shards/cO000000-dfffffff/ replicator.
data/.shards/cO000000-dfffffff/ replicator.

-»3e823c2a4383ac0c18d4e574135a5b08.view

1518451591 _design
1518451591_design/mrview
1518451591_design/mrview/

1518451591 _design
1518451591_design/mrview
1518451591_design/mrview/

Since they are files, you can use cp, rsync, scp or other file-copying command to copy them from one node to

another. For example:

one one machine

mkdir -p data/.shards/{range}
mkdir -p data/shards/{range}
on the other

I Y

{node}: {couch-dir}/data/.shards/{range}/

“

{node}:{couch-dir}/data/shards/{range}/

scp {couch-dir}/data/.shards/{range}/{database}.{datecode}* \

scp {couch-dir}/data/shards/{range}/{database}.{datecode}.couch \

Note:
will rebuild it from scratch.

Remember to move view files before database files! If a view index is ahead of its database, the database

254

Chapter 8. Cluster Management

Apache CouchDB®, Release 3.3.3

Set the target node to true maintenance mode

Before telling CouchDB about these new shards on the node, the node must be put into maintenance mode. Main-
tenance mode instructs CouchDB to return a 404 Not Found response on the /_up endpoint, and ensures it does
not participate in normal interactive clustered requests for its shards. A properly configured load balancer that
uses GET /_up to check the health of nodes will detect this 404 and remove the node from circulation, preventing
requests from being sent to that node. For example, to configure HAProxy to use the /_up endpoint, use:

http-check disable-on-404
option httpchk GET /_up

If you do not set maintenance mode, or the load balancer ignores this maintenance mode status, after the next step
is performed the cluster may return incorrect responses when consulting the node in question. You don’t want this!
In the next steps, we will ensure that this shard is up-to-date before allowing it to participate in end-user requests.

To enable maintenance mode:

$ curl -X PUT -H "Content-type: application/json" \
$COUCH_URL:5984/_node/{node-name}/_config/couchdb/maintenance_mode \
_d "\"true\””

Then, verify that the node is in maintenance mode by performing a GET /_up on that node’s individual endpoint:

$ curl -v $COUCH_URL/_up
< HTTP/1.1 404 Object Not Found

{"status":"maintenance_mode"}

Finally, check that your load balancer has removed the node from the pool of available backend nodes.

Updating cluster metadata to reflect the new target shard(s)
Now we need to tell CouchDB that the target node (which must already be joined to the cluster) should be hosting
shard replicas for a given database.

To update the cluster metadata, use the special /_dbs database, which is an internal CouchDB database that maps
databases to shards and nodes. This database is automatically replicated between nodes. It is accessible only
through the special /_node/_local/_dbs endpoint.

First, retrieve the database’s current metadata:

$ curl http://localhost/_node/_local/_dbs/{name}
{
"_id": "{name}",
"_rev": "1-el3fb7e79af3b3107ed62925058bfa3a",
"shard_suffix": [46, 49, 53, 51, 48, 50, 51, 50, 53, 50, 54],
"changelog": [
["add", "00000000-1fffffff", "nodel@xxx.XXX.XXX.Xxx"],
["add", "00000000-1fffffff", "node2@xxx.XXX.XXX.xXxx"],
["add", "00000000-1fffffff", "node3@xxx.xxx.xxx.xxx"],

1,

"by_node": {
"nodel@xxx.xXxXX.XxxX.xxx": [
"00000000-1fffffff",
1,

(continues on next page)

8.4. Shard Management 255

Apache CouchDB®, Release 3.3.3

(continued from previous page)

3,
"by_range": {
"00000000-1fffffff": [
"nodel@xxXxX.XXX.XXX.xXxx",
"node2@xxx.XXX.XXX.xXxx",
"node3@xxx.XXX.XXX.xXxx"

1,

}
}

Here is a brief anatomy of that document:
e _id: The name of the database.
e _rev: The current revision of the metadata.

e shard_suffix: A timestamp of the database’s creation, marked as seconds after the Unix epoch mapped
to the codepoints for ASCII numerals.

» changelog: History of the database’s shards.
¢ by_node: List of shards on each node.
¢ by_range: On which nodes each shard is.
To reflect the shard move in the metadata, there are three steps:
1. Add appropriate changelog entries.
2. Update the by_node entries.

3. Update the by_range entries.

Warning: Be very careful! Mistakes during this process can irreparably corrupt the cluster!

As of this writing, this process must be done manually.

To add a shard to a node, add entries like this to the database metadata’s changelog attribute:

["add", "{range}", "{node-name}"]

The {range} is the specific shard range for the shard. The {node-name} should match the name and address of
the node as displayed in GET /_membership on the cluster.

Note: When removing a shard from a node, specify remove instead of add.

Once you have figured out the new changelog entries, you will need to update the by_node and by_range to reflect
who is storing what shards. The data in the changelog entries and these attributes must match. If they do not, the
database may become corrupted.

Continuing our example, here is an updated version of the metadata above that adds shards to an additional node
called node4:

{
"_id": "{name}",
"_rev'": "l1-el3fb7e79af3b3107ed62925058bfa3a",
"shard_suffix": [46, 49, 53, 51, 48, 50, 51, 50, 53, 50, 54],
"changelog": [
["add", "00000000-1fffffff", "nodel@xxx.xXxXX.XXX.Xxx"],

(continues on next page)

256 Chapter 8. Cluster Management

Apache CouchDB®, Release 3.3.3

(continued from previous page)

}

["add", "00000000-1fffffff",
["add", "00000000-1fffffff",

["add", "00000000-1fffffff",

1,
"by_node": {
"nodel@xxx.xxX.xXxx.xxx": [
"00000000-1fffffff",
1,
"node4@xxx.xXxXX.xxx.xxx": [
"00000000-1fffffff"
]
}1

"by_range": {
"00000000-1fffffff": [
"nodel@xxx.XXX.XXX.xXxx",
"node2@xxx.XXX.XXX.XxXx",
"node3@xxxX.XXX.XXX.xxx",
"node4@xxx.XXX.XXX.Xxx"

}

"node2@xxx.xxx.xxx.xxx"],
"node3@xxx.xXxXX.Xxx.xxx"],

"node4@xxx.XXX.XXX.Xxx"]

Now you can PUT this new metadata:

$ curl -X PUT http://localhost/_node/_local/_dbs/{name} -d '{...}'

Forcing synchronization of the shard(s)

New in version 2.4.0.

Whether you pre-copied shards to your new node or not, you can force CouchDB to synchronize all replicas of all
shards in a database with the /db/_sync_shards endpoint:

$ curl -X POST $COUCH_URL:5984/{db}/_sync_shards
{"ok":true}

This starts the synchronization process. Note that this will put additional load onto your cluster, which may affect
performance.

It is also possible to force synchronization on a per-shard basis by writing to a document that is stored within that
shard.

Note: Admins may want to bump their [mem3] sync_concurrency value to a larger figure for the duration of
the shards sync.

8.4. Shard Management

257

Apache CouchDB®, Release 3.3.3

Monitor internal replication to ensure up-to-date shard(s)

After you complete the previous step, CouchDB will have started synchronizing the shards. You can
observe this happening by monitoring the /_node/{node-name}/_system endpoint, which includes the
internal_replication_jobs metric.

Once this metric has returned to the baseline from before you started the shard sync, or is 0, the shard replica is
ready to serve data and we can bring the node out of maintenance mode.

Clear the target node’s maintenance mode

You can now let the node start servicing data requests by putting "false" to the maintenance mode configuration
endpoint, just as in step 2.
Verify that the node is not in maintenance mode by performing a GET /_up on that node’s individual endpoint.

Finally, check that your load balancer has returned the node to the pool of available backend nodes.
Update cluster metadata again to remove the source shard
Now, remove the source shard from the shard map the same way that you added the new target shard to the shard

map in step 2. Be sure to add the ["remove", {range}, {source-shard}] entry to the end of the changelog
as well as modifying both the by_node and by_range sections of the database metadata document.

Remove the shard and secondary index files from the source node

Finally, you can remove the source shard replica by deleting its file from the command line on the source host,
along with any view shard replicas:

$ rm {couch-dir}/data/shards/{range}/{db}.{datecode}.couch
$ rm -r {couch-dir}/data/.shards/{range}/{db}.{datecode}*

Congratulations! You have moved a database shard replica. By adding and removing database shard replicas in
this way, you can change the cluster’s shard layout, also known as a shard map.

8.4.4 Specifying database placement

You can configure CouchDB to put shard replicas on certain nodes at database creation time using placement rules.

Warning: Use of the placement option will override the n option, both in the .ini file as well as when
specified in a URL.

First, each node must be labeled with a zone attribute. This defines which zone each node is in. You do this by
editing the node’s document in the special /_nodes database, which is accessed through the special node-local
API endpoint at /_node/_local/_nodes/{node-name}. Add a key value pair of the form:

"zone": "{zone-name}"

Do this for all of the nodes in your cluster. For example:

$ curl -X PUT http://localhost/_node/_local/_nodes/{node-name} \

-d '{\
"_id": "{node-name}",
"_rev": "{rev}",
"zone": "{zone-name}"
1

258 Chapter 8. Cluster Management

Apache CouchDB®, Release 3.3.3

In the local config file (local.ini) of each node, define a consistent cluster-wide setting like:

[cluster]
placement = {zone-name-1}:2,{zone-name-2}:1

In this example, CouchDB will ensure that two replicas for a shard will be hosted on nodes with the zone attribute
set to {zone-name-1} and one replica will be hosted on a new with the zone attribute set to {zone-name-2}.

This approach is flexible, since you can also specify zones on a per- database basis by specifying the placement
setting as a query parameter when the database is created, using the same syntax as the ini file:

curl -X PUT $COUCH_URL:5984/{db}?zone={zone}

The placement argument may also be specified. Note that this will override the logic that determines the number
of created replicas!

Note that you can also use this system to ensure certain nodes in the cluster do not host any replicas for newly
created databases, by giving them a zone attribute that does not appear in the [cluster] placement string.

8.4.5 Splitting Shards

The /_reshard is an HTTP API for shard manipulation. Currently it only supports shard splitting. To perform shard
merging, refer to the manual process outlined in the Merging Shards section.

The main way to interact with /_reshard is to create resharding jobs, monitor those jobs, wait until they complete,
remove them, post new jobs, and so on. What follows are a few steps one might take to use this API to split shards.

At first, it’s a good idea to call GET /_reshard to see a summary of resharding on the cluster.

$ curl -s $COUCH_URL:5984/_reshard | jq .

{
"state": "running",
"state_reason'": null,
"completed": 3,
"failed": O,
"running": O,
"stopped": O,
"total": 3

}

Two important things to pay attention to are the total number of jobs and the state.

The state field indicates the state of resharding on the cluster. Normally it would be running, however, another
user could have disabled resharding temporarily. Then, the state would be stopped and hopefully, there would be
a reason or a comment in the value of the state_reason field. See Stopping Resharding Jobs for more details.

The total number of jobs is important to keep an eye on because there is a maximum number of resharding jobs
per node, and creating new jobs after the limit has been reached will result in an error. Before staring new jobs it’s a
good idea to remove already completed jobs. See reshard configuration section for the default value of max_jobs
parameter and how to adjust if needed.

For example, to remove all the completed jobs run:

$ for jobid in $(curl -s $COUCH_URL:5984/_reshard/jobs | jq -r '.jobs[] | select (.
—»job_state=="completed") | .id'); do \
curl -s -XDELETE $COUCH_URL:5984/_reshard/jobs/$jobid \
done

Then it’s a good idea to see what the db shard map looks like.

8.4. Shard Management 259

Apache CouchDB®, Release 3.3.3

$ curl -s $COUCH_URL:5984/dbl/_shards | jq '.'
{
"shards": {
"00000000-7ff£££££f": [
"nodel@127.0.0.1",
"node2@127.0.0.1",
"node3@127.0.0.1"
1,
"80000000-ffffffff": [
"nodel@127.0.0.1",
"node2@127.0.0.1",
"node3@127.0.0.1"
]
}
}

In this example we’ll split all the copies of the 00000000-7fffffff range. The API allows a combination of
parameters such as: splitting all the ranges on all the nodes, all the ranges on just one node, or one particular range
on one particular node. These are specified via the db, node and range job parameters.

To split all the copies of 00000000-7fffffff we issue a request like this:

$ curl -s -H "Content-type: application/json" -XPOST $COUCH_URL:5984/_reshard/jobs \
-d '{"type": "split", "db":"dbl", "range":"00000000-7fffffff"}' | jq '.'
[
{
"ok": true,
"id": "001-ef512cfb502a1c6079fel7e9dfd5d6a2befcc694a146de468blba5339baldl34",
"node": "nodel@127.0.0.1",
"shard": "shards/00000000-7fffffff/db1.1554242778"

"ok": true,

"id": "0®01-cec63704a7b33c6da8263211db9a5c74alcbh585d1lbla24eb946483e2075739ca",
"node": "node2@127.0.0.1",

"shard": "shards/00000000-7fffffff/dbl.1554242778"

"ok": true,
"id": "001-fc72090c006d9b059d4acd99e3be9bb73e986d60ca3edede3cb74ccOlccdl456",
"node": "node3@127.0.0.1",
"shard": "shards/00000000-7fffffff/db1.1554242778"
}
]

The request returned three jobs, one job for each of the three copies.
To check progress of these jobs use GET /_reshard/jobs or GET /_reshard/jobs/{jobid}.

Eventually, these jobs should complete and the shard map should look like this:

$ curl -s $COUCH_URL:5984/dbl/_shards | jq '.'
{
"shards": {
"00000000-3fffffff": [
"nodel@127.0.0.1",
"node2@127.0.0.1",
"node3@127.0.0.1"
1,

(continues on next page)

260 Chapter 8. Cluster Management

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"40000000-7fff£££f": [
"nodel@127.0.0.1",
"node2@127.0.0.1",
"node3@127.0.0.1"

1,
"80000000-ffffffff": [
"nodel@127.0.0.1",
"node2@127.0.0.1",
"node3@127.0.0.1"

8.4.6 Stopping Resharding Jobs

Resharding at the cluster level could be stopped and then restarted. This can be helpful to allow external tools
which manipulate the shard map to avoid interfering with resharding jobs. To stop all resharding jobs on a cluster
issue a PUT to /_reshard/state endpoint with the "state": "stopped" key and value. You can also specify
an optional note or reason for stopping.

For example:

$ curl -s -H "Content-type: application/json" \

-XPUT $COUCH_URL:5984/_reshard/state \

-d '{"state": "stopped", "reason":"Moving some shards"}'
{"ok": true}

This state will then be reflected in the global summary:

$ curl -s $COUCH_URL:5984/_reshard | jq .

{
"state": "stopped",
"state_reason": "Moving some shards",
"completed": 74,
"failed": O,
"running": 0,
"stopped": O,
"total": 74
}

To restart, issue a PUT request like above with running as the state. That should resume all the shard splitting jobs
since their last checkpoint.

See the API reference for more details: / reshard.

8.4.7 Merging Shards

The q value for a database can be set when the database is created or it can be increased later by splitting some of the
shards Splitting Shards. In order to decrease q and merge some shards together, the database must be regenerated.
Here are the steps:

1. If there are running shard splitting jobs on the cluster, stop them via the HTTP API Stopping Resharding
Jobs.

2. Create a temporary database with the desired shard settings, by specifying the q value as a query parameter
during the PUT operation.

3. Stop clients accessing the database.

8.4. Shard Management 261

Apache CouchDB®, Release 3.3.3

4. Replicate the primary database to the temporary one. Multiple replications may be required if the primary
database is under active use.

5. Delete the primary database. Make sure nobody is using it!
6. Recreate the primary database with the desired shard settings.
7. Clients can now access the database again.

8. Replicate the temporary back to the primary.

9. Delete the temporary database.

Once all steps have completed, the database can be used again. The cluster will create and distribute its shards
according to placement rules automatically.

Downtime can be avoided in production if the client application(s) can be instructed to use the new database instead
of the old one, and a cut- over is performed during a very brief outage window.

8.5 Clustered Purge

The primary purpose of clustered purge is to clean databases that have multiple deleted tombstones or single
documents that contain large numbers of conflicts. But it can also be used to purge any document (deleted or
non-deleted) with any number of revisions.

Clustered purge is designed to maintain eventual consistency and prevent unnecessary invalidation of secondary
indexes. For this, every database keeps track of a certain number of historical purges requested in the database, as
well as its current purge_seq. Internal replications and secondary indexes process database’s purges and periodi-
cally update their corresponding purge checkpoint documents to report purge_seq processed by them. To ensure
eventual consistency, the database will remove stored historical purge requests only after they have been processed
by internal replication jobs and secondary indexes.

8.5.1 Internal Structures

To enable internal replication of purge information between nodes and secondary indexes, two internal purge trees
were added to a database file to track historical purges.

purge_tree: UUID -> {PurgeSeq, DocId, Revs}
purge_seq_tree: PurgeSeq -> {UUID, DocId, Revs}

Each interactive request to _purge API, creates an ordered set of pairs on increasing purge_seq and
purge_request, where purge_request is a tuple that contains docid and list of revisions. For each purge_request uuid
is generated. A purge request is added to internal purge trees: a tuple {UUID -> {PurgeSeq, DocId, Revs}}
is added to purge_tree, a tuple is {PurgeSeq -> {UUID, DocId, Revs}} added to purge_seq_tree.

8.5.2 Compaction of Purges

During the compaction of the database the oldest purge requests are to be removed to store only
purged_infos_limit number of purges in the database. But in order to keep the database consistent with indexes
and other replicas, we can only remove purge requests that have already been processed by indexes and internal
replications jobs. Thus, occasionally purge trees may store more than purged_infos_limit purges. If the num-
ber of stored purges in the database exceeds purged_infos_limit by a certain threshold, a warning is produced
in logs signaling a problem of synchronization of database’s purges with indexes and other replicas.

262 Chapter 8. Cluster Management

Apache CouchDB®, Release 3.3.3

8.5.3 Local Purge Checkpoint Documents

Indexes and internal replications of the database with purges create and periodically update local checkpoint purge
documents: _local/purge-$type-$hash. These documents report the last purge_seq processed by them and
the timestamp of the last processing. An example of a local checkpoint purge document:

{
"_id": "_local/purge-mrview-86cacdfbaf6968d4ebbc324dd3723fe7",
"type": "mrview",

"purge_seq": 10,

"updated_on": 1540541874,

"ddoc_id": "_design/foo",

"signature": "5d10247925f826ae3e00966ec24b7bf6"

The below image shows possible local checkpoint documents that a database may have.

B
e I
hE
ShardA %%ra — T e Map/Reduce
Node2 localipurge_mem3 _lecalipurge: - Indax
ShardNode2UUID- Miview gig
e ShardNode1ULID
ShardA
I
Nodet _loca p'I.II'QE ‘-%.
dreyfus_sig oty
—_— localipurge_mem3
— ShardNode2UUID- localfpurge Search
ShardMode1UJLID hastings_sig e
ShardA =
Nodel

B %[q
Geo
\Index.

Local Purge Checkpoint Documents
Fig. 1: Local Purge Checkpoint Documents

8.5.4 Internal Replication

Purge requests are replayed across all nodes in an eventually consistent manner. Internal replication of purges
consists of two steps:

1. Pull replication. Internal replication first starts by pulling purges from target and applying them on source to
make sure we don’t reintroduce to target source’s docs/revs that have been already purged on target. In this step,
we use purge checkpoint documents stored on target to keep track of the last target’s purge_seq processed by the
source. We find purge requests occurred after this purge_seq, and replay them on source. This step is done by
updating the target’s checkpoint purge documents with the latest process purge_seq and timestamp.

2. Push replication. Then internal replication proceeds as usual with an extra step inserted to push source’s purge
requests to target. In this step, we use local internal replication checkpoint documents, that are updated both on
target and source.

Under normal conditions, an interactive purge request is already sent to every node containing a database shard’s
replica, and applied on every replica. Internal replication of purges between nodes is just an extra step to ensure
consistency between replicas, where all purge requests on one node are replayed on another node. In order not to
replay the same purge request on a replica, each interactive purge request is tagged with a unique uuid. Internal
replication filters out purge requests with UUIDs that already exist in the replica’s purge_tree, and applies only
purge requests with UUIDs that don’t exist in the purge_tree. This is the reason why we needed to have two

8.5. Clustered Purge 263

Apache CouchDB®, Release 3.3.3

internal purge trees: 1) purge_tree: {UUID -> {PurgeSeq, DocId, Revs}} allows to quickly find purge
requests with UUIDs that already exist in the replica; 2) purge_seq_tree: {PurgeSeq -> {UUID, DocId,
Revs}} allows to iterate from a given purge_seq to collect all purge requests happened after this purge_seq.

8.5.5 Indexes

Each purge request will bump up update_seq of the database, so that each secondary index is also updated in
order to apply the purge requests to maintain consistency within the main database.

8.5.6 Config Settings

These settings can be updated in the default.ini or local.ini:

Field Description De-
fault
max_document_id_numberAllowed maximum number of documents in one purge request 100

max_revisions_number | Allowed maximum number of accumulated revisions in one purge request | 1000
allowed_purge_seq_lag | Beside purged_infos_limit, allowed additional buffer to store purge re- | 100

quests
in- Allowed durations when index is not updated for local purge checkpoint | 86400
dex_lag_warn_seconds | document

During a database compaction, we check all checkpoint purge docs. A client (an index or internal replication job)
is allowed to have the last reported purge_seq to be smaller than the current database shard’s purge_seq by the
value of (purged_infos_limit + allowed_purge_seq_lag). If the client’s purge_seq is even smaller, and
the client has not checkpointed within index_lag_warn_seconds, it prevents compaction of purge trees and we
have to issue the following log warning for this client:

Purge checkpoint '_local/purge-mrview-9152d15c12011288629bcffba7693fd4’
not updated in 86400 seconds in
<<"shards/00000000-1fffffff/testdbl2.1491979689">>

If this type of log warning occurs, check the client to see why the processing of purge requests is stalled in it.

There is a mapping relationship between a design document of indexes and local checkpoint docs. If a design doc-
ument of indexes is updated or deleted, the corresponding local checkpoint document should be also automatically
deleted. But in an unexpected case, when a design doc was updated/deleted, but its checkpoint document still exists
in a database, the following warning will be issued:

"Invalid purge doc '<<"_design/bar">>' on database
<<"shards/00000000-1fffffff/testdbl2.1491979689">>
with purge_seq '50'"

If this type of log warning occurs, remove the local purge doc from a database.

8.6 TLS Erlang Distribution

The main purpose is specifically to allow using TLS for Erlang distribution between nodes, with the ability to
connect to some nodes using TCP as well. TLS distribution will enhance data security during data migration
between nodes.

This section describes how to enable TLS distribution for additional verification and security.

Reference: Using TLS for Erlang Distribution

264 Chapter 8. Cluster Management

https://erlang.org/doc/apps/ssl/ssl_distribution.html

Apache CouchDB®, Release 3.3.3

8.6.1 Generate Certificate

For TLS to work properly, at least one public key and one certificate must be specified. In the following example
(couch_ssl_dist.conf), the PEM file contains the certificate and its private key.

[{server,
[{certfile, "</path/to/erlserver.pem>"},
{secure_renegotiate, true}]l},

{client,
[{secure_renegotiate, true}]}].

The following command is an example of generating a certificate (PEM) file.

$ openssl req -newkey rsa:2048 -new -nodes -x509 -days 3650 -keyout key.pem.
—-out cert.pem
$ cat key.pem cert.pem > erlserver.pem &% rm key.pem cert.pem

Note: This is not an endorsement of a specific expiration limit, key size or algorithm.

8.6.2 Config Settings

To enable TLS distribution, make sure to set custom parameters in vm. args.

Don't forget to override the paths to point to your cert and conf file!

-proto_dist couch
-couch_dist no_tls \"clouseau@127.0.0.1\"
-ssl_dist_optfile <path/to/couch_ssl_dist.conf>

Note:

¢ The default value of no_t1ls is false. If the user does not set any no_t1s flag, all nodes will
use TCP.

» To ensure “search” works, make sure to set no_t1ls option for the clouseau node. By default,
this will be "clouseau@127.0.0.1".

The no_t1s flag can have these values:

1. Use TLS only, set to false (default value), such as:

-couch_dist no_tls false

2. Use TCP only, set to true, such as:

-couch_dist no_tls true

3. Specify some nodes to use TCP, others to use TLS, such as:

Specify nodel and node2 to use TCP, others use TLS

-couch_dist no_tls \"nodel@127.0.0.1\"
-couch_dist no_tls \"node2@127.0.0.1\"

8.6. TLS Erlang Distribution 265

Apache CouchDB®, Release 3.3.3

Any nodes end with "@127.0.0.1" will use TCP, others use TLS

-couch_dist no_tls \"*@127.0.0.1\"

Note: Asterisk(*): matches a sequence of zero or more occurrences of the regular expression.

Question mark(?): matches zero or one occurrences of the regular expression.

8.6.3 Connect to Remsh

Start Erlang using a remote shell connected to Node.

e If the node uses TCP:

$./remsh

e If the node uses TLS:

$./remsh -t <path/to/couch_ssl_dist.conf>

8.7 Troubleshooting CouchDB 3 with WeatherReport

8.7.1 Overview

WeatherReport is an OTP application and set of tools that diagnoses common problems which could affect a
CouchDB version 3 node or cluster (version 4 or later is not supported). It is accessed via the weatherreport
command line escript.

Here is a basic example of using weatherreport followed immediately by the command’s output:

$ weatherreport --etc /path/to/etc
[warning] Cluster member node3@127.0.0.1 is not connected to this node. Please check.
—whether it is down.

8.7.2 Usage

For most cases, you can just run the weatherreport command as shown above. However, sometimes you might
want to know some extra detail, or run only specific checks. For that, there are command-line options. Execute
weatherreport --help to learn more about these options:

$ weatherreport --help
Usage: weatherreport [-c <path>] [-d <level>] [-e] [-h] [-1] [check_name ...]

-c, --etc Path to the CouchDB configuration directory

-d, --level Minimum message severity level (default: notice)
-1, --list Describe available diagnostic tasks

-e, --expert Perform more detailed diagnostics

-h, --help Display help/usage

check_name A specific check to run

To get an idea of what checks will be run, use the —list option:

266 Chapter 8. Cluster Management

Apache CouchDB®, Release 3.3.3

$ weatherreport --list
Available diagnostic checks:

custodian Shard safety/liveness checks

disk Data directory permissions and atime

internal_replication Check the number of pending internal replication jobs

iog Check the total number of active IOQ requests

mem3_sync Check there is a registered mem3_sync process

membership Cluster membership validity

memory_use Measure memory usage

message_queues Check for processes with large mailboxes

node_stats Check useful erlang statistics for diagnostics

nodes_connected Cluster node liveness

process_calls Check for large numbers of processes with the same current/
—initial call

process_memory Check for processes with high memory usage

safe_to_rebuild Check whether the node can safely be taken out of service

search Check the local search node is responsive

tcp_queues Measure the length of tcp queues in the kernel

If you want all the gory details about what WeatherReport is doing, you can run the checks at a more verbose
logging level with the --1evel option:

$ weatherreport --etc /path/to/etc --level debug

[debug] Not connected to the local cluster node, trying to connect. alive:false.
—connect_failed:undefined

[debug] Starting distributed Erlang.

[debug] Connected to local cluster node 'nodel@127.0.0.1'.
[debug] Local RPC: mem3:nodes([]) [5000]

[debug] Local RPC: os:getpid([]) [5000]

[debug] Running shell command: ps -o pmem,rss -p 73905
[debug] Shell command output:

%MEM RSS

0.3 25116

[debug] Local RPC: erlang:nodes([]) [5000]

[debug] Local RPC: mem3:nodes([]) [5000]

[warning] Cluster member node3@127.0.0.1 is not connected to this node. Please check.
—whether it is down.

[info] Process is using 0.3% of available RAM, totalling 25116 KB of real memory.

Most times you’ll want to use the defaults, but any syslog severity name will do (from most to least verbose):
debug, info, notice, warning, error, critical, alert, emergency.

Finally, if you want to run just a single diagnostic or a list of specific ones, you can pass their name(s):

$ weatherreport --etc /path/to/etc nodes_connected
[warning] Cluster member node3@127.0.0.1 is not connected to this node. Please check.
—whether it is down.

8.7. Troubleshooting CouchDB 3 with WeatherReport 267

Apache CouchDB®, Release 3.3.3

268 Chapter 8. Cluster Management

CHAPTER
NINE

MAINTENANCE

9.1 Compaction

The compaction operation is a way to reduce disk space usage by removing unused and old data from database or
view index files. This operation is very similar to the vacuum (SQLite ex.) operation available for other database
management systems.

During compaction, CouchDB re-creates the database or view in a new file with the . compact extension. As this
requires roughly twice the disk storage, CouchDB first checks for available disk space before proceeding.

When all actual data is successfully transferred to the newly compacted file, CouchDB transparently swaps the
compacted file into service, and removes the old database or view file.

Since CouchDB 2.1.1, automated compaction is enabled by default, and is described in the next section. It is still
possible to trigger manual compaction if desired or necessary. This is described in the subsequent sections.

9.1.1 Automatic Compaction

CouchDB’s automatic compaction daemon, internally known as “smoosh”, will trigger compaction jobs for both
databases and views based on configurable thresholds for the sparseness of a file and the total amount of space that
can be recovered.

Channels

Smoosh works using the concept of channels. A channel is essentially a queue of pending compactions. There are
separate sets of active channels for databases and views. Each channel is assigned a configuration which defines
whether a compaction ends up in the channel’s queue and how compactions are prioritized within that queue.

Smoosh takes each channel and works through the compactions queued in each in priority order. Each channel is
processed concurrently, so the priority levels only matter within a given channel. Each channel has an assigned
number of active compactions, which defines how many compactions happen for that channel in parallel. For
example, a cluster with a lot of database churn but few views might require more active compactions in the database
channel(s).

It’s important to remember that a channel is local to a CouchDB node; that is, each node maintains and processes
an independent set of compactions. Channels are defined as either “ratio” channels or “slack” channels, depending
on the type of algorithm used for prioritization:

» Ratio: uses the ratio of sizes.file / sizes.active as its driving calculation. The result X must be greater than
some configurable value Y for a compaction to be added to the queue. Compactions are then prioritised for
higher values of X.

* Slack: uses the difference of sizes.file - sizes.active as its driving calculation. The result X must be greater
than some configurable value Y for a compaction to be added to the queue. Compactions are prioritised for
higher values of X.

In both cases, Y is set using the min_priority configuration variable. CouchDB ships with four channels pre-
configured: one channel of each type for databases, and another one for views.

269

http://www.sqlite.org/lang_vacuum.html

Apache CouchDB®, Release 3.3.3

Channel Configuration

Channels are defined using [smoosh.<channel_name>] configuration blocks, and activated by naming the chan-
nel in the db_channels or view_channels configuration setting in the [smoosh] block. The default configura-
tion is

[smoosh]

db_channels = upgrade_dbs,ratio_dbs,slack_dbs
view_channels = upgrade_views,ratio_views,slack_views
cleanup_channels = index_cleanup

[smoosh.ratio_dbs]
priority = ratio
min_priority = 2.0

[smoosh.ratio_views]
priority = ratio
min_priority = 2.0

[smoosh.slack_dbs]
priority = slack
min_priority = 536870912

[smoosh.slack_views]
priority = slack
min_priority = 536870912

The “upgrade” and “cleanup_channels” are special system channels. The “upgrade” ones check whether the
disk_format_version for the file matches the current version, and enqueue the file for compaction (which has
the side effect of upgrading the file format) if that’s not the case. In addition to that, the upgrade_views will
enqueue views for compaction after the collation (libicu) library is upgraded. The “index_cleanup” channel is used
for scheduling jobs used to remove stale index files and purge _local checkpoint document after design documents
are updated.

Here are several additional properties that can be configured for each channel; these are documented in the config-
uration API

Scheduling Windows

Each compaction channel can be configured to run only during certain hours of the day. The channel-specific from,
to, and strict_window configuration settings control this behavior. For example

[smoosh.overnight_channel]
from = 20:00

to = 06:00

strict_window = true

where overnight_channel is the name of the channel you want to configure.

Note: CouchDB determines time via the UTC (GMT) timezone, so these settings must be expressed as UTC
(GMT).

The strict_window setting will cause the compaction daemon to suspend all active compactions in this channel
when exiting the window, and resume them when re-entering. If strict_window is left at its default of false, the
active compactions will be allowed to complete but no new compactions will be started.

Note: When a channel is created, a 60s timer is started to check if the channel should be processing any com-
pactions based on the time window defined in your config.

270 Chapter 9. Maintenance

Apache CouchDB®, Release 3.3.3

The channel is set to pending and after 60s it checks if it should be running at all and is set to paused if not. At the
end of the check another 60s timer is started to schedule another check.

Eventually, when in the time window, it starts processing compactions. But since it will continue running a check
every 60s running compaction processes will be suspended when exiting the time window and resume them when
re-entering the window.

This means that for the first 60s after exiting the time window, or when a channel is created and you are outside
the time window, compactions are run for up to 60s.This is different to the behavior of the old compaction daemon
which would cancel the compactions outright.

Migration Guide

Previous versions of CouchDB shipped with a simpler compaction daemon. The configuration system for the new
daemon is not backwards-compatible with the old one, so users with customized compaction configurations will
need to port them to the new setup. The old daemon’s compaction rules configuration looked like

[compaction_daemon]
min_file_size = 131072
check_interval = 3600
snooze_period_ms = 3000

[compactions]

mydb = [{db_fragmentation, "70%"}, {view_fragmentation, "60%"}, {parallel_view_
—,compaction, true}]

_default = [{db_fragmentation, "50%"}, {view_fragmentation, "55%"}, {from, "20:00"},
~{to, "06:00"}, {strict_window, true}]

Many of the elements of this configuration can be ported over to the new system. Examining each in detail:
e min_file_size is now configured on a per-channel basis using the min_size config setting.

» db_fragmentation is equivalent to configuring a priority = ratio channel with min_priority set to 1.0/ (1
- db_fragmentation/100) and then listing that channel in the [smoosh] db_channels config setting.

* view_fragmention is likewise equivalent to configuring a priority = ratio channel with min_priority set
to 1.0 / (1 - view_fragmentation/100) and then listing that channel in the [smoosh] view_channels config
setting.

e from/to/strict_window: each of these settings can be applied on a per-channel basis in the new daemon.
The one behavior change is that the new daemon will suspend compactions upon exiting the allowed window
instead of canceling them outright, and resume them when re-entering.

e parallel_view_compaction: each compaction channel has a concurrency setting that controls how many
compactions will execute in parallel in that channel. The total parallelism is the sum of the concurrency
settings of all active channels. This is a departure from the previous behavior, in which the daemon would
only focus on one database and/or its views (depending on the value of this flag) at a time.

The check_interval and snooze_period_ms settings are obsolete in the event-driven design of the new dae-
mon. The new daemon does not support setting database-specific thresholds as in the mydb setting above. Rather,
channels can be configured to focus on specific classes of files: large databases, small view indexes, and so on.
Most cases of named database compaction rules can be expressed using properties of those databases and/or their
associated views.

9.1. Compaction 271

Apache CouchDB®, Release 3.3.3

9.1.2 Manual Database Compaction

Database compaction compresses the database file by removing unused file sections created during updates. Old
documents revisions are replaced with small amount of metadata called tombstone which are used for conflicts
resolution during replication. The number of stored revisions (and their tombstones) can be configured by using
the _revs_Ilimit URL endpoint.

Compaction can be manually triggered per database and runs as a background task. To start it for specific database
there is need to send HTTP POST /{db}/_compact sub-resource of the target database:

curl -H "Content-Type: application/json" -X POST http://localhost:5984/my_db/_compact

On success, HTTP status 202 Accepted is returned immediately:

HTTP/1.1 202 Accepted

Cache-Control: must-revalidate
Content-Length: 12

Content-Type: text/plain; charset=utf-8
Date: Wed, 19 Jun 2013 09:43:52 GMT
Server: CouchDB (Erlang/OTP)

{"ok":true}

Although the request body is not used you must still specify Content-Type header with application/json value
for the request. If you don’t, you will be aware about with HTTP status 415 Unsupported Media Type response:

HTTP/1.1 415 Unsupported Media Type
Cache-Control: must-revalidate
Content-Length: 78

Content-Type: application/json
Date: Wed, 19 Jun 2013 09:43:44 GMT
Server: CouchDB (Erlang/OTP)

{"error":"bad_content_type","reason":"Content-Type must be application/json"}

When the compaction is successful started and running it is possible to get information about it via database
information resource:

curl http://localhost:5984/my_db

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 246

Content-Type: application/json
Date: Wed, 19 Jun 2013 16:51:20 GMT
Server: CouchDB (Erlang/OTP)

{
"committed_update_seq": 76215,
"compact_running": true,
"db_name": "my_db",
"disk_format_version": 6,
"doc_count": 5091,
"doc_del_count": 0,
"instance_start_time": "0",
"purge_seq": 0,

"sizes": {
"active": 3787996,

(continues on next page)

272 Chapter 9. Maintenance

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"disk": 17703025,
"external": 4763321

1,
"update_seq": 76215

Note that compact_running field is true indicating that compaction is actually running. To track the compaction
progress you may query the _active_tasks resource:

curl http://localhost:5984/_active_tasks

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 175

Content-Type: application/json
Date: Wed, 19 Jun 2013 16:27:23 GMT
Server: CouchDB (Erlang/OTP)

L

"changes_done": 44461,
"database": "my_db",

"pid": "<0.218.0>",
"progress": 58,

"started_on": 1371659228,
"total_changes": 76215,
"type": "database_compaction",
"updated_on": 1371659241

9.1.3 Manual View Compaction

Views also need compaction. Unlike databases, views are compacted by groups per design document. To start their
compaction, send the HTTP POST /{db}/_compact/{ddoc} request:

curl -H "Content-Type: application/json" -X POST http://localhost:5984/dbname/_
—.compact/designname

{"ok":true}

This compacts the view index from the current version of the specified design document. The HTTP response code
is 202 Accepted (like compaction for databases) and a compaction background task will be created.

Views cleanup

View indexes on disk are named after their MD5 hash of the view definition. When you change a view, old indexes
remain on disk. To clean up all outdated view indexes (files named after the MDS5 representation of views, that
does not exist anymore) you can trigger a view cleanup:

curl -H "Content-Type: application/json" -X POST http://localhost:5984/dbname/_view_
—cleanup

9.1. Compaction 273

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3

Apache CouchDB®, Release 3.3.3

{"ok":true}

9.2 Performance

With up to tens of thousands of documents you will generally find CouchDB to perform well no matter how you
write your code. Once you start getting into the millions of documents you need to be a lot more careful.

9.2.1 Disk I/O

File Size

The smaller your file size, the less I/O operations there will be, the more of the file can be cached by CouchDB and
the operating system, the quicker it is to replicate, backup etc. Consequently you should carefully examine the data
you are storing. For example it would be silly to use keys that are hundreds of characters long, but your program
would be hard to maintain if you only used single character keys. Carefully consider data that is duplicated by
putting it in views.

Disk and File System Performance

Using faster disks, striped RAID arrays and modern file systems can all speed up your CouchDB deployment.
However, there is one option that can increase the responsiveness of your CouchDB server when disk performance
is a bottleneck. From the Erlang documentation for the file module:

On operating systems with thread support, it is possible to let file operations be performed in threads
of their own, allowing other Erlang processes to continue executing in parallel with the file operations.
See the command line flag +A in erl(1).

Setting this argument to a number greater than zero can keep your CouchDB installation responsive even during
periods of heavy disk utilization. The easiest way to set this option is through the ERL_FLAGS environment variable.
For example, to give Erlang four threads with which to perform I/O operations add the following to (prefix)/
etc/defaults/couchdb (or equivalent):

export ERL_FLAGS="+A 4"

9.2.2 System Resource Limits

One of the problems that administrators run into as their deployments become large are resource limits imposed by
the system and by the application configuration. Raising these limits can allow your deployment to grow beyond
what the default configuration will support.

CouchDB Configuration Options

max_dbs_open

In your configuration (local.ini or similar) familiarize yourself with the couchdb/max_dbs_open:

[couchdb]
max_dbs_open = 100

This option places an upper bound on the number of databases that can be open at one time. CouchDB reference
counts database accesses internally and will close idle databases when it must. Sometimes it is necessary to keep
more than the default open at once, such as in deployments where many databases will be continuously replicating.

274 Chapter 9. Maintenance

http://erlang.org/doc/man/erl.html

Apache CouchDB®, Release 3.3.3

Erlang

Even if you’ve increased the maximum connections CouchDB will allow, the Erlang runtime system will not al-
low more than 65536 connections by default. Adding the following directive to (prefix)/etc/vm.args (or
equivalent) will increase this limit (in this case to 102400):

+Q 102400

Note that on Windows, Erlang will not actually increase the file descriptor limit past 8192 (i.e. the system
header—defined value of FD_SETSIZE). On macOS, the limit may be as low as 1024. See this tip for a possible
workaround and this thread for a deeper explanation.

Maximum open file descriptors (ulimit)

In general, modern UNIX-like systems can handle very large numbers of file handles per process (e.g. 100000)
without problem. Don’t be afraid to increase this limit on your system.

The method of increasing these limits varies, depending on your init system and particular OS release. The default
value for many OSes is 1024 or 4096. On a system with many databases or many views, CouchDB can very rapidly
hit this limit.

For systemd-based Linuxes (such as CentOS/RHEL 7, Ubuntu 16.04+, Debian 8 or newer), assuming you are
launching CouchDB from systemd, you must override the upper limit via editing the override file. The best practice
for this is via the systemctl edit couchdb command. Add these lines to the file in the editor:

[Service]
LimitNOFILE=65536

...or whatever value you like. To increase this value higher than 65536, you must also add the Erlang +Q parameter
to your etc/vm.args file by adding the line:

+Q 102400

The old ERL_MAX_PORTS environment variable is ignored by the version of Erlang supplied with CouchDB.

If your system is set up to use the Pluggable Authentication Modules (PAM), and you are not launching CouchDB
from systemd, increasing this limit is straightforward. For example, creating a file named /etc/security/
limits.d/100-couchdb.conf with the following contents will ensure that CouchDB can open up to 65536
file descriptors at once:

#<domain> <type> <item> <value>
couchdb hard nofile 65536
couchdb soft nofile 65536

If you are using our Debian/Ubuntu sysvinit script (/etc/init.d/couchdb), you also need to raise the limits for
the root user:

#<domain> <type> <item> <value>
root hard nofile 65536
root soft nofile 65536

You may also have to edit the /etc/pam.d/common-session and /etc/pam.d/
common-session-noninteractive files to add the line:

session required pam_limits.so

if it is not already present.

If your system does not use PAM, a ulimit command is usually available for use in a custom script to launch
CouchDB with increased resource limits. Typical syntax would be something like ulimit -n 65536.

9.2. Performance 275

http://erlang.org/pipermail/erlang-questions/2011-December/063119.html
http://erlang.org/pipermail/erlang-questions/2011-December/063119.html
http://erlang.org/pipermail/erlang-questions/2011-October/061971.html
http://www.linux-pam.org/

Apache CouchDB®, Release 3.3.3

9.2.3 Network

There is latency overhead making and receiving each request/response. In general you should do your requests
in batches. Most APIs have some mechanism to do batches, usually by supplying lists of documents or keys in
the request body. Be careful what size you pick for the batches. The larger batch requires more time your client
has to spend encoding the items into JSON and more time is spent decoding that number of responses. Do some
benchmarking with your own configuration and typical data to find the sweet spot. It is likely to be between one
and ten thousand documents.

If you have a fast I/O system then you can also use concurrency - have multiple requests/responses at the same
time. This mitigates the latency involved in assembling JSON, doing the networking and decoding JSON.

As of CouchDB 1.1.0, users often report lower write performance of documents compared to older releases. The
main reason is that this release ships with the more recent version of the HTTP server library MochiWeb, which
by default sets the TCP socket option SO_NODELAY to false. This means that small data sent to the TCP socket,
like the reply to a document write request (or reading a very small document), will not be sent immediately to the
network - TCP will buffer it for a while hoping that it will be asked to send more data through the same socket
and then send all the data at once for increased performance. This TCP buffering behaviour can be disabled via
httpd/socket_options:

[httpd]
socket_options = [{nodelay, true}]

See also:
Bulk load and store API.
Connection limit

MochiWeb handles CouchDB requests. The default maximum number of connections is 2048. To change this
limit, use the server_options configuration variable. max indicates maximum number of connections.

[chttpd]
server_options = [{backlog, 128}, {acceptor_pool_size, 16}, {max, 4096}]

9.2.4 CouchDB

DELETE operation

When you DELETE a document the database will create a new revision which contains the _id and _rev fields
as well as the _deleted flag. This revision will remain even after a database compaction so that the deletion can
be replicated. Deleted documents, like non-deleted documents, can affect view build times, PUT and DELETE
request times, and the size of the database since they increase the size of the B+Tree. You can see the number of
deleted documents in database information. If your use case creates lots of deleted documents (for example,
if you are storing short-term data like log entries, message queues, etc), you might want to periodically switch to
a new database and delete the old one (once the entries in it have all expired).

276 Chapter 9. Maintenance

http://en.wikipedia.org/wiki/Nagle%27s_algorithm
https://github.com/mochi/mochiweb
https://tools.ietf.org/html/rfc7231#section-4.3.5
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.5

Apache CouchDB®, Release 3.3.3

Document’s ID

The db file size is derived from your document and view sizes but also on a multiple of your _id sizes. Not only
is the _id present in the document, but it and parts of it are duplicated in the binary tree structure CouchDB uses
to navigate the file to find the document in the first place. As a real world example for one user switching from 16
byte ids to 4 byte ids made a database go from 21GB to 4GB with 10 million documents (the raw JSON text when
from 2.5GB to 2GB).

Inserting with sequential (and at least sorted) ids is faster than random ids. Consequently you should consider
generating ids yourself, allocating them sequentially and using an encoding scheme that consumes fewer bytes.
For example, something that takes 16 hex digits to represent can be done in 4 base 62 digits (10 numerals, 26 lower
case, 26 upper case).

9.2.5 Views

Views Generation

Views with the JavaScript query server are extremely slow to generate when there are a non-trivial number of
documents to process. The generation process won’t even saturate a single CPU let alone your I/O. The cause
is the latency involved in the CouchDB server and separate couchjs query server, dramatically indicating how
important it is to take latency out of your implementation.

You can let view access be “stale” but it isn’t practical to determine when that will occur giving you a quick
response and when views will be updated which will take a long time. (A 10 million document database took
about 10 minutes to load into CouchDB but about 4 hours to do view generation).

In a cluster, “stale” requests are serviced by a fixed set of shards in order to present users with consistent results
between requests. This comes with an availability trade-off - the fixed set of shards might not be the most responsive
/ available within the cluster. If you don’t need this kind of consistency (e.g. your indexes are relatively static), you
can tell CouchDB to use any available replica by specifying stable=false&update=false instead of stale=ok,
or stable=false&update=lazy instead of stale=update_after.

View information isn’t replicated - it is rebuilt on each database so you can’t do the view generation on a separate
sever.

Built-In Reduce Functions

If you’re using a very simple view function that only performs a sum or count reduction, you can call native Erlang
implementations of them by simply writing _sum or _count in place of your function declaration. This will speed
up things dramatically, as it cuts down on IO between CouchDB and the JavaScript query server. For example,
as mentioned on the mailing list, the time for outputting an (already indexed and cached) view with about 78,000
items went down from 60 seconds to 4 seconds.

Before:
{
"_id": "_design/foo",
"views": {
"bar": {
"map": "function (doc) { emit(doc.author, 1); 1}",
"reduce": "function (keys, values, rereduce) { return sum(values); }"
}
}
}
After:

9.2. Performance 277

http://mail-archives.apache.org/mod_mbox/couchdb-user/201003.mbox/%3c5E07E00E-3D69-4A8C-ADA3-1B20CF0BA4C8@julianstahnke.com%3e

Apache CouchDB®, Release 3.3.3

{
"_id": "_design/foo",
"views": {
"bar": {
"map": "function (doc) { emit(doc.author, 1); }",
"reduce": "_sum"
}
}
}
See also:

Built-in Reduce Functions

9.3 Backing up CouchDB

CouchDB has three different types of files it can create during runtime:
» Database files (including secondary indexes)
 Configuration files (*.ini)
* Log files (if configured to log to disk)

Below are strategies for ensuring consistent backups of all of these files.

9.3.1 Database Backups

The simplest and easiest approach for CouchDB backup is to use CouchDB replication to another CouchDB in-
stallation. You can choose between normal (one-shot) or continuous replications depending on your need.

However, you can also copy the actual . couch files from the CouchDB data directory (by default, data/) at any
time, without problem. CouchDB’s append-only storage format for both databases and secondary indexes ensures
that this will work without issue.

To ensure reliability of backups, it is recommended that you back up secondary indexes (stored under data/
.shards) prior to backing up the main database files (stored under data/shards as well as the system-level
databases at the parent data/ directory). This is because CouchDB will automatically handle views/secondary
indexes that are slightly out of date by updating them on the next read access, but views or secondary indexes that
are newer than their associated databases will trigger a full rebuild of the index. This can be a very costly and
time-consuming operation, and can impact your ability to recover quickly in a disaster situation.

On supported operating systems/storage environments, you can also make use of storage snapshots. These have the
advantage of being near-instantaneous when working with block storage systems such as ZFS or LVM or Amazon
EBS. When using snapshots at the block-storage level, be sure to quiesce the file system with an OS-level utility
such as Linux’s fsfreeze if necessary. If unsure, consult your operating system’s or cloud provider’s documentation
for more detail.

278 Chapter 9. Maintenance

https://en.wikipedia.org/wiki/Snapshot_(computer_storage)
https://en.wikipedia.org/wiki/ZFS
https://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)
https://en.wikipedia.org/wiki/Amazon_Elastic_Block_Store
https://en.wikipedia.org/wiki/Amazon_Elastic_Block_Store
https://linux.die.net/man/8/fsfreeze

Apache CouchDB®, Release 3.3.3

9.3.2 Configuration Backups

CouchDB’s configuration system stores data in .ini files under the configuration directory (by default, etc/). If
changes are made to the configuration at runtime, the very last file in the configuration chain will be updated with
the changes.

Simple back up the entire etc/ directory to ensure a consistent configuration after restoring from backup.

If no changes to the configuration are made at runtime through the HTTP API, and all configuration files are man-
aged by a configuration management system (such as Ansible or Chef), there is no need to backup the configuration
directory.

9.3.3 Log Backups

If configured to log to a file, you may want to back up the log files written by CouchDB. Any backup solution for
these files works.

Under UNIX-like systems, if using log rotation software, a copy-then-truncate approach is necessary. This will
truncate the original log file to zero size in place after creating a copy. CouchDB does not recognize any signal to
be told to close its log file and create a new one. Because of this, and because of differences in how file handles
function, there is no straightforward log rotation solution under Microsoft Windows other than periodic restarts of
the CouchDB process.

9.3. Backing up CouchDB 279

https://en.wikipedia.org/wiki/Ansible_(software)
https://en.wikipedia.org/wiki/Chef_(software)

Apache CouchDB®, Release 3.3.3

280 Chapter 9. Maintenance

CHAPTER
TEN

FAUXTON

10.1 Fauxton Setup

Fauxton is included with CouchDB 2.0, so make sure CouchDB is running, then go to:

http://127.0.0.1:5984/_utils/

You can also upgrade to the latest version of Fauxton by using npm:

$ npm install -g fauxton
$ fauxton

(Recent versions of node.js and npm are required.)

10.1.1 Fauxton Visual Guide

You can find the Visual Guide here:
http://couchdb.apache.org/fauxton-visual-guide

10.1.2 Development Server

Recent versions of node.js and npm are required.

Using the dev server is the easiest way to use Fauxton, specially when developing for it:

$ git clone https://github.com/apache/couchdb-fauxton.git
$ npm install && npm run dev

10.1.3 Understanding Fauxton Code layout

Each bit of functionality is its own separate module or addon.
All core modules are stored under app/module and any addons that are optional are under app/addons.

We use backbone.js and Backbone.layoutmanager quite heavily, so best to get an idea how they work. Its best at
this point to read through a couple of the modules and addons to get an idea of how they work.

Two good starting points are app/addon/config and app/modules/databases.
Each module must have a base.js file, this is read and compile when Fauxton is deployed.

The resource.js file is usually for your Backbone.Models and Backbone.Collections, view.js for your
Backbone.Views.

The routes.js is used to register a url path for your view along with what layout, data, breadcrumbs and api point is
required for the view.

281

http://nodejs.org/
https://npmjs.org/doc/README.html
http://couchdb.apache.org/fauxton-visual-guide
http://nodejs.org/
https://npmjs.org/doc/README.html
http://backbonejs.org/
https://github.com/tbranyen/backbone.layoutmanager

Apache CouchDB®, Release 3.3.3

ToDo items

Checkout JIRA or GitHub Issues for a list of items to do.

282 Chapter 10. Fauxton

https://github.com/apache/couchdb-fauxton/issues

CHAPTER
ELEVEN

EXPERIMENTAL FEATURES

This is a list of experimental features in CouchDB. They are included in a release because the development team
is requesting feedback from the larger developer community. As such, please play around with these features and
send us feedback, thanks!

Use at your own risk! Do not rely on these features for critical applications.

11.1 Content-Security-Policy (CSP) Header Support for /_utils
(Fauxton)

This will just work with Fauxton. You can enable it in your config: you can enable the feature in general and change
the default header that is sent for everything in /_utils.

[cspl]
enable = true

Then restart CouchDB.

Have fun!

283

Apache CouchDB®, Release 3.3.3

284 Chapter 11. Experimental Features

CHAPTER
TWELVE

API REFERENCE

The components of the API URL path help determine the part of the CouchDB server that is being accessed. The
result is the structure of the URL request both identifies and effectively describes the area of the database you are
accessing.

As with all URLs, the individual components are separated by a forward slash.

As a general rule, URL components and JSON fields starting with the _ (underscore) character represent a special
component or entity within the server or returned object. For example, the URL fragment /_all_dbs gets a list
of all of the databases in a CouchDB instance.

This reference is structured according to the URL structure, as below.

12.1 API Basics

The CouchDB API is the primary method of interfacing to a CouchDB instance. Requests are made using HTTP
and requests are used to request information from the database, store new data, and perform views and formatting
of the information stored within the documents.

Requests to the API can be categorised by the different areas of the CouchDB system that you are accessing, and
the HTTP method used to send the request. Different methods imply different operations, for example retrieval
of information from the database is typically handled by the GET operation, while updates are handled by either a
POST or PUT request. There are some differences between the information that must be supplied for the different
methods. For a guide to the basic HTTP methods and request structure, see Request Format and Responses.

For nearly all operations, the submitted data, and the returned data structure, is defined within a JavaScript Object
Notation (JSON) object. Basic information on the content and data types for JSON are provided in JSON Basics.

Errors when accessing the CouchDB API are reported using standard HTTP Status Codes. A guide to the generic
codes returned by CouchDB are provided in HTTP Status Codes.

When accessing specific areas of the CouchDB API, specific information and examples on the HTTP methods and
request, JSON structures, and error codes are provided.

12.1.1 Request Format and Responses

CouchDB supports the following HTTP request methods:
* GET

Request the specified item. As with normal HTTP requests, the format of the URL defines what is returned.
With CouchDB this can include static items, database documents, and configuration and statistical informa-
tion. In most cases the information is returned in the form of a JSON document.

e HEAD
The HEAD method is used to get the HTTP header of a GET request without the body of the response.

285

Apache CouchDB®, Release 3.3.3

* POST

Upload data. Within CouchDB POST is used to set values, including uploading documents, setting document
values, and starting certain administration commands.

e PUT

Used to put a specified resource. In CouchDB PUT is used to create new objects, including databases, docu-
ments, views and design documents.

* DELETE

Deletes the specified resource, including documents, views, and design documents.
* COPY

A special method that can be used to copy documents and objects.

If you use an unsupported HTTP request type with an URL that does not support the specified type then a 405 -
Method Not Allowed will be returned, listing the supported HTTP methods. For example:

{

"error":"method_not_allowed",
"reason":"Only GET,HEAD allowed"

12.1.2 HTTP Headers

Because CouchDB uses HTTP for all communication, you need to ensure that the correct HTTP headers are sup-
plied (and processed on retrieval) so that you get the right format and encoding. Different environments and clients
will be more or less strict on the effect of these HTTP headers (especially when not present). Where possible you
should be as specific as possible.

Request Headers

* Accept

Specifies the list of accepted data types to be returned by the server (i.e. that are accepted/understandable by
the client). The format should be a list of one or more MIME types, separated by colons.

For the majority of requests the definition should be for JSON data (application/json). For attachments
you can either specify the MIME type explicitly, or use */* to specify that all file types are supported. If the
Accept header is not supplied, then the */* MIME type is assumed (i.e. client accepts all formats).

The use of Accept in queries for CouchDB is not required, but is highly recommended as it helps to ensure
that the data returned can be processed by the client.

If you specify a data type using the Accept header, CouchDB will honor the specified type in the
Content-type header field returned. For example, if you explicitly request application/json in the
Accept of a request, the returned HTTP headers will use the value in the returned Content-type field.

For example, when sending a request without an explicit Accept header, or when specifying */*:

GET /recipes HTTP/1.1
Host: couchdb:5984
Accept: */*

The returned headers are:

HTTP/1.1 200 OK
Server: CouchDB (Erlang/OTP)
Date: Thu, 13 Jan 2011 13:39:34 GMT

(continues on next page)

286 Chapter 12. API Reference

Apache CouchDB®, Release 3.3.3

(continued from previous page)

Content-Type: text/plain;charset=utf-8
Content-Length: 227
Cache-Control: must-revalidate

Note: The returned content type is text/plain even though the information returned by the request is in
JSON format.

Explicitly specifying the Accept header:

GET /recipes HTTP/1.1
Host: couchdb:5984
Accept: application/json

The headers returned include the application/json content type:

HTTP/1.1 200 OK

Server: CouchDB (Erlang/OTP)

Date: Thu, 13 Jan 2013 13:40:11 GMT
Content-Type: application/json
Content-Length: 227

Cache-Control: must-revalidate

* Content-type

Specifies the content type of the information being supplied within the request. The specification uses MIME
type specifications. For the majority of requests this will be JSON (application/json). For some settings
the MIME type will be plain text. When uploading attachments it should be the corresponding MIME type
for the attachment or binary (application/octet-stream).

The use of the Content-type on a request is highly recommended.

Response Headers

Response headers are returned by the server when sending back content and include a number of different header
fields, many of which are standard HTTP response header and have no significance to CouchDB operation. The
list of response headers important to CouchDB are listed below.

¢ Cache-control

The cache control HTTP response header provides a suggestion for client caching mechanisms on how to
treat the returned information. CouchDB typically returns the must-revalidate, which indicates that the
information should be revalidated if possible. This is used to ensure that the dynamic nature of the content
is correctly updated.

e Content-length
The length (in bytes) of the returned content.
¢ Content-type

Specifies the MIME type of the returned data. For most request, the returned MIME type is text/plain.
All text is encoded in Unicode (UTF-8), and this is explicitly stated in the returned Content-type, as
text/plain;charset=utf-8.

* Etag
The Etag HTTP header field is used to show the revision for a document, or a view.

ETags have been assigned to a map/reduce group (the collection of views in a single design document). Any
change to any of the indexes for those views would generate a new ETag for all view URLSs in a single design
doc, even if that specific view’s results had not changed.

12.1. API Basics 287

Apache CouchDB®, Release 3.3.3

Each _view URL has its own ETag which only gets updated when changes are made to the database that
effect that index. If the index for that specific view does not change, that view keeps the original ETag head
(therefore sending back 304 - Not Modified more often).

e Transfer-Encoding
If the response uses an encoding, then it is specified in this header field.

Transfer-Encoding: chunked means that the response is sent in parts, a method known as chunked
transfer encoding. This is used when CouchDB does not know beforehand the size of the data it will send
(for example, the changes feed).

¢ X-CouchDB-Body-Time
Time spent receiving the request body in milliseconds.
Available when body content is included in the request.
¢ X-Couch-Request-ID

Unique identifier for the request.

12.1.3 JSON Basics

The majority of requests and responses to CouchDB use the JavaScript Object Notation (JSON) for formatting the
content and structure of the data and responses.

JSON is used because it is the simplest and easiest solution for working with data within a web browser, as JSON
structures can be evaluated and used as JavaScript objects within the web browser environment. JSON also inte-
grates with the server-side JavaScript used within CouchDB.

JSON supports the same basic types as supported by JavaScript, these are:

* Array - a list of values enclosed in square brackets. For example:

["one", "two", "three"]

* Boolean - a true or false value. You can use these strings directly. For example:

{ "value": true}

¢ Number - an integer or floating-point number.

* Object - a set of key/value pairs (i.e. an associative array, or hash). The key must be a string, but the value
can be any of the supported JSON values. For example:

{
"servings" : 4,
"subtitle" : "Easy to make in advance, and then cook when ready",
"cooktime" : 60,
"title" : "Chicken Coriander"
}

In CouchDB, the JSON object is used to represent a variety of structures, including the main CouchDB
document.

* String - this should be enclosed by double-quotes and supports Unicode characters and backslash escaping.
For example:

"A String"

Parsing JSON into a JavaScript object is supported through the JSON.parse () function in JavaScript, or through
various libraries that will perform the parsing of the content into a JavaScript object for you. Libraries for parsing
and generating JSON are available in many languages, including Perl, Python, Ruby, Erlang and others.

288 Chapter 12. API Reference

https://en.wikipedia.org/wiki/Chunked_transfer_encoding
https://en.wikipedia.org/wiki/Chunked_transfer_encoding

Apache CouchDB®, Release 3.3.3

Warning: Care should be taken to ensure that your JSON structures are valid, invalid structures will cause
CouchDB to return an HTTP status code of 500 (server error).

Number Handling

Developers and users new to computer handling of numbers often encounter surprises when expecting that a number
stored in JSON format does not necessarily return as the same number as compared character by character.

Any numbers defined in JSON that contain a decimal point or exponent will be passed through the Erlang VM’s
idea of the “double” data type. Any numbers that are used in views will pass through the view server’s idea of a
number (the common JavaScript case means even integers pass through a double due to JavaScript’s definition of
a number).

Consider this document that we write to CouchDB:

{
"_id":"30b3b38cdbd9e3a587de9b8122000cff",
"number": 1.1

Now let’s read that document back from CouchDB:

{
"_id":"30b3b38cdbd9e3a587de9b8122000cff",
"_rev":"1-f065cee7c3fd93aa50f6c97acde93030",
"number":1.1000000000000000888

}

What happens is CouchDB is changing the textual representation of the result of decoding what it was given into
some numerical format. In most cases this is an IEEE 754 double precision floating point number which is exactly
what almost all other languages use as well.

What Erlang does a bit differently than other languages is that it does not attempt to pretty print the resulting output
to use the shortest number of characters. For instance, this is why we have this relationship:

ejson:encode(ejson:decode(<<"1.1">>)).
<<"1.1000000000000000888">>

What can be confusing here is that internally those two formats decode into the same IEEE-754 representation.
And more importantly, it will decode into a fairly close representation when passed through all major parsers that
we know about.

While we’ve only been discussing cases where the textual representation changes, another important case is when
an input value contains more precision than can actually represented in a double. (You could argue that this case
is actually “losing” data if you don’t accept that numbers are stored in doubles).

Here’s a log for a couple of the more common JSON libraries that happen to be on the author’s machine:

Ejson (CouchDB’s current parser) at CouchDB sha 168a663b:

$./utils/run -i
Erlang R14B04 (erts-5.8.5) [source] [64-bit] [smp:2:2] [rq:2]
[async-threads:4] [hipe] [kernel-poll:true]

Eshell V5.8.5 (abort with AG)

1> ejson:encode(ejson:decode(<<"1.01234567890123456789012345678901234567890">>)).
<<"1.0123456789012346135">>

2> F = ejson:encode(ejson:decode(<<"1.01234567890123456789012345678901234567890">>)).
<<"1.0123456789012346135">>

(continues on next page)

12.1. API Basics 289

https://en.wikipedia.org/wiki/IEEE_754-2008

Apache CouchDB®, Release 3.3.3

(continued from previous page)

3> ejson:encode(ejson:decode(F)).
<<"1.0123456789012346135">>

Node:

$ node -v

v0.6.15

$ node

JSON.stringify(JSON.parse("1.01234567890123456789012345678901234567890"))
'1.0123456789012346'

var £ = JSON.stringify(JSON.parse("1.01234567890123456789012345678901234567890"))
undefined

JSON.stringify(JSON.parse(f))

'1.0123456789012346"

Python:

$ python

Python 2.7.2 (default, Jun 20 2012, 16:23:33)

[GCC 4.2.1 Compatible Apple Clang 4.0 (tags/Apple/clang-418.0.60)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
import json
json.dumps(json.loads("1.01234567890123456789012345678901234567890"))
'1.0123456789012346'

f = json.dumps(json.loads("1.01234567890123456789012345678901234567890"))
json.dumps (json.loads(£f))

'1.0123456789012346'

Ruby:

$ irb --version

irb 0.9.5(05/04/13)

require 'JSON'

=> true

JSON. dump (JSON.load("[1.01234567890123456789012345678901234567890]1"))

=> "[1.01234567890123]"

f = JSON.dump(JSON.load("[1.01234567890123456789012345678901234567890]"))
=> "[1.01234567890123]"

JSON. dump (JSON.load(£f))

=> "[1.01234567890123]"

Note: A small aside on Ruby, it requires a top level object or array, so I just wrapped the value. Should be obvious
it doesn’t affect the result of parsing the number though.

Spidermonkey:

$ js -h 2>&1 | head -n 1

JavaScript-C 1.8.5 2011-03-31

$ js

js> JSON.stringify(JSON.parse("1.01234567890123456789012345678901234567890"))
"1.0123456789012346"

js> var £ = JSON.stringify(JSON.parse("1.01234567890123456789012345678901234567890"))
js> JSON.stringify(JSON.parse(£))

"1.0123456789012346"

As you can see they all pretty much behave the same except for Ruby actually does appear to be losing some

290 Chapter 12. API Reference

Apache CouchDB®, Release 3.3.3

precision over the other libraries.

The astute observer will notice that ejson (the CouchDB JSON library) reported an extra three digits. While its
tempting to think that this is due to some internal difference, its just a more specific case of the 1.1 input as described
above.

The important point to realize here is that a double can only hold a finite number of values. What we’re doing here
is generating a string that when passed through the “standard” floating point parsing algorithms (ie, strtod) will
result in the same bit pattern in memory as we started with. Or, slightly different, the bytes in a JSON serialized
number are chosen such that they refer to a single specific value that a double can represent.

The important point to understand is that we’re mapping from one infinite set onto a finite set. An easy way to see
this is by reflecting on this:

1.0 == 1.00 == 1.000 = 1.(infinite zeros)

Obviously a computer can’t hold infinite bytes so we have to decimate our infinitely sized set to a finite set that can
be represented concisely.

The game that other JSON libraries are playing is merely:
“How few characters do I have to use to select this specific value for a double”

And that game has lots and lots of subtle details that are difficult to duplicate in C without a significant amount of
effort (it took Python over a year to get it sorted with their fancy build systems that automatically run on a number
of different architectures).

Hopefully we’ve shown that CouchDB is not doing anything “funky” by changing input. Its behaving the same as
any other common JSON library does, its just not pretty printing its output.

On the other hand, if you actually are in a position where an IEEE-754 double is not a satisfactory data type for
your numbers, then the answer as has been stated is to not pass your numbers through this representation. In JSON
this is accomplished by encoding them as a string or by using integer types (although integer types can still bite
you if you use a platform that has a different integer representation than normal, ie, JavaScript).

Further information can be found easily, including the Floating Point Guide, and David Goldberg’s Reference.

Also, if anyone is really interested in changing this behavior, we’re all ears for contributions to jiffy (which is
theoretically going to replace ejson when we get around to updating the build system). The places we’ve looked
for inspiration are TCL and Python. If you know a decent implementation of this float printing algorithm give us
a holler.

12.1.4 HTTP Status Codes

With the interface to CouchDB working through HTTP, error codes and statuses are reported using a combination
of the HTTP status code number, and corresponding data in the body of the response data.

A list of the error codes returned by CouchDB, and generic descriptions of the related errors are provided below.
The meaning of different status codes for specific request types are provided in the corresponding API call reference.

* 200 - OK

Request completed successfully.
* 201 - Created

Document created successfully.
e 202 - Accepted

Request has been accepted, but the corresponding operation may not have completed. This is used for back-
ground operations, such as database compaction.

e 304 - Not Modified

The additional content requested has not been modified. This is used with the ETag system to identify the
version of information returned.

12.1. API Basics 291

http://floating-point-gui.de/
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://github.com/davisp/jiffy

Apache CouchDB®, Release 3.3.3

* 400 - Bad Request

Bad request structure. The error can indicate an error with the request URL, path or headers. Differences in
the supplied MDS5 hash and content also trigger this error, as this may indicate message corruption.

* 401 - Unauthorized

The item requested was not available using the supplied authorization, or authorization was not supplied.
* 403 - Forbidden

The requested item or operation is forbidden.
* 404 - Not Found

The requested content could not be found. The content will include further information, as a JSON object,
if available. The structure will contain two keys, error and reason. For example:

{"error":"not_found","reason":"no_db_file"}

e 405 - Method Not Allowed

A request was made using an invalid HTTP request type for the URL requested. For example, you have
requested a PUT when a POST is required. Errors of this type can also triggered by invalid URL strings.

* 406 - Not Acceptable
The requested content type is not supported by the server.
* 409 - Conflict
Request resulted in an update conflict.
* 412 - Precondition Failed
The request headers from the client and the capabilities of the server do not match.
* 413 - Request Entity Too Large

A document exceeds the configured couchdb/max_document_size value or the entire request exceeds the
chttpd/max_http_request_size value.

e 415 - Unsupported Media Type

The content types supported, and the content type of the information being requested or submitted indicate
that the content type is not supported.

¢ 416 - Requested Range Not Satisfiable

The range specified in the request header cannot be satisfied by the server.
* 417 - Expectation Failed

When sending documents in bulk, the bulk load operation failed.
* 500 - Internal Server Error

The request was invalid, either because the supplied JSON was invalid, or invalid information was supplied
as part of the request.

e 503 - Service Unavailable

The request can’t be serviced at this time, either because the cluster is overloaded, maintenance is underway,
or some other reason. The request may be retried without changes, perhaps in a couple of minutes.

292 Chapter 12. API Reference

Apache CouchDB®, Release 3.3.3

12.2 Server

The CouchDB server interface provides the basic interface to a CouchDB server for obtaining CouchDB informa-
tion and getting and setting configuration information.

12.21 /

GET /

Accessing the root of a CouchDB instance returns meta information about the instance. The response is a
JSON structure containing information about the server, including a welcome message and the version of

the server.
Request Headers
e Accept —
— application/json
— text/plain

Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Status Codes
* 200 OK — Request completed successfully
Request:

GET / HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 179

Content-Type: application/json
Date: Sat, 10 Aug 2013 06:33:33 GMT
Server: CouchDB (Erlang/OTP)

{
"couchdb": "Welcome",
"uuid": "85fb71bf700c17267fef77535820e371",
"vendor": {
"name": "The Apache Software Foundation",
"version": "1.3.1"
3,
"version": "1.3.1"
}

12.2. Server 293

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Apache CouchDB®, Release 3.3.3

12.2.2 /_active_tasks

Changed in version 2.1.0: Because of how the scheduling replicator works, continuous replication jobs could be
periodically stopped and then started later. When they are not running they will not appear in the _active_tasks
endpoint

Changed in version 3.3: Added “bulk_get_attempts” and “bulk_get_docs” fields for replication jobs.

GET /_active_tasks

List of running tasks, including the task type, name, status and process ID. The result is a JSON array of the
currently running tasks, with each task being described with a single object. Depending on operation type
set of response object fields might be different.

Request Headers
e Accept —
— application/json
- text/plain
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Response JSON Object
» changes_done (number) — Processed changes
» database (string) — Source database
e pid (string) — Process ID
* progress (number) — Current percentage progress
» started_on (number) — Task start time as unix timestamp
* status (string) — Task status message
 task (string) — Task name
* total_changes (number) — Total changes to process
* type (string) — Operation Type
» updated_on (number) — Unix timestamp of last operation update
Status Codes
* 200 OK — Request completed successfully
* 401 Unauthorized — CouchDB Server Administrator privileges required

Request:

GET /_active_tasks HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 1690

Content-Type: application/json
Date: Sat, 10 Aug 2013 06:37:31 GMT

(continues on next page)

294 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

(continued from previous page)

Server: CouchDB (Erlang/OTP)

"changes_done": 64438,
"database": "mailbox",

"pid": "<0.12986.1>",
"progress": 84,

"started_on": 1376116576,
"total_changes": 76215,
"type": "database_compaction",
"updated_on": 1376116619

"changes_done": 14443,

"database": "mailbox",

"design_document": "c9753817b3ba7c674d92361£24£59bh9f",
"pid": "<0.10461.3>",

"progress": 18,

"started_on": 1376116621,

"total_changes": 76215,

"type": "indexer",

"updated_on": 1376116650

"changes_done": 5454,

"database": "mailbox",
"design_document": "_design/meta",
"pid": "<0.6838.4>",

"progress": 7,

"started_on": 1376116632,
"total_changes": 76215,

"type": "indexer",

"updated_on": 1376116651

"checkpointed_source_seq": 68585,
"continuous": false,

"doc_id": null,

"doc_write_failures": 0,
"bulk_get_attempts": 4524,
"bulk_get_docs": 4524,

"docs_read": 4524,

"docs_written": 4524,
"missing_revisions_found": 4524,

"pid": "<0.1538.5>",

"progress": 44,

"replication_id": "9bc1727d74d49d9e157e260bb8bbd1d5",
"revisions_checked": 4524,

"source": "mailbox",

"source_seq": 154419,

"started_on": 1376116644,

"target": "http://mailsrv:5984/mailbox",
"type": "replication",

"updated_on": 1376116651

(continues on next page)

12.2. Server 295

Apache CouchDB®, Release 3.3.3

(continued from previous page)

12.2.3 /_all_dbs

GET /_all_dbs

Returns a list of all the databases in the CouchDB instance.
Request Headers
e Accept —
— application/json
- text/plain
Query Parameters

* descending (boolean) — Return the databases in descending order by key. Default is
false.

» endkey (json) — Stop returning databases when the specified key is reached.
» end_key (json) — Alias for endkey param
e limit (number) — Limit the number of the returned databases to the specified number.

» skip (number) — Skip this number of databases before starting to return the results.
Default is 0.

» startkey (json) — Return databases starting with the specified key.
e start_key (json) — Alias for startkey.
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Status Codes
* 200 OK — Request completed successfully
Request:

GET /_all_dbs HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 52

Content-Type: application/json
Date: Sat, 10 Aug 2013 06:57:48 GMT
Server: CouchDB (Erlang/OTP)

[
"_users",
"contacts",
"docs",

(continues on next page)

296 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"invoices",
"locations"

12.2.4 /_dbs_info

New in version 3.2.

GET /_dbs_info

Returns a list of all the databases information in the CouchDB instance.

Request Headers
* Accept —
— application/json
— text/plain

Query Parameters

* descending (boolean) — Return databases information in descending order by key.

Default is false.

* endkey (json) — Stop returning databases information when the specified key is

reached.

* end_key (json) — Alias for endkey param

e limit (number) — Limit the number of the returned databases information to the spec-

ified number.

» skip (number) — Skip this number of databases before starting to return the results.

Default is 0.

» startkey (json) — Return databases information starting with the specified key.

e start_key (json) — Alias for startkey.

Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Status Codes
* 200 OK — Request completed successfully
Request:

GET /_dbs_info HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Thu, 18 Nov 2021 14:37:35 GMT
Server: CouchDB (Erlang OTP/23)

(continues on next page)

12.2. Server

297

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Apache CouchDB®, Release 3.3.3

(continued from previous page)

[
{
"key": "animals",
"info": {
"db_name": "animals",
"update_seq": "52232",
"sizes": {
"file": 1178613587,
"external": 1713103872,
"active": 1162451555
1,
"purge_seq": 0,
"doc_del_count": 0,
"doc_count": 52224,
"disk_format_version": 6,
"compact_running": false,
"cluster": {
" 8,

i3
"2,
2

H = 5.9

},

"instance_start_time": "0"

New in version 2.2.

POST /_dbs_info

Returns information of a list of the specified databases in the CouchDB instance. This enables you to request
information about multiple databases in a single request, in place of multiple GET /{db} requests.

Request Headers
* Accept —
— application/json
Response Headers
* Content-Type —
— application/json
Request JSON Object
* keys (array) — Array of database names to be requested
Status Codes
* 200 OK — Request completed successfully
* 400 Bad Request — Missing keys or exceeded keys in request
Request:

POST /_dbs_info HTTP/1.1
Accept: application/json

Host: localhost:5984
Content-Type: application/json

(continues on next page)

298 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Apache CouchDB®, Release 3.3.3

(continued from previous page)

{

"keys": [
"animals",
"plants"”

]

}
Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Sat, 20 Dec 2017 06:57:48 GMT
Server: CouchDB (Erlang/OTP)

[
{
"key": "animals",
"info": {
"db_name": "animals",
"update_seq": "52232",
"sizes": {
"file": 1178613587,
"external": 1713103872,
"active": 1162451555
1,
"purge_seq": 0,
"doc_del_count": 0,
"doc_count": 52224,
"disk_format_version": 6,
"compact_running": false,
"cluster": {
" 8,

3
"2,
2

H = 5.9

1,
"instance_start_time": "0"
}
1,
{
"key": "plants",
"info": {
"db_name": "plants",
"update_seq": "303",
"sizes": {
"file": 3872387,
"external": 2339,
"active": 67475
1,
"purge_seq": 0,
"doc_del_count": 0,
"doc_count": 11,
"disk_format_version": 6,
"compact_running": false,
"cluster": {

(continues on next page)

12.2. Server

299

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"q": 8,
"n": 3,
"w"': 2,
"r'": 2

1,

"instance_start_time": "0"

}
}
]

Note: The supported number of the specified databases in the list can be limited by modifying the
max_db_number_for_dbs_info_req entry in configuration file. The default limit is 100. Increasing the limit, while
possible, creates load on the server so it is advisable to have more requests with 100 dbs, rather than a few requests
with 1000s of dbs at a time.

12.2.5 /_cluster_setup

New in version 2.0.

GET /_cluster_setup
Returns the status of the node or cluster, per the cluster setup wizard.

Request Headers
* Accept —
— application/json
— text/plain
Query Parameters

» ensure_dbs_exist (array) — List of system databases to ensure exist on the

non

node/cluster. Defaults to ["_users","_replicator"].
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Response JSON Object
e state (string) — Current state of the node and/or cluster (see below)
Status Codes
* 200 OK — Request completed successfully
The state returned indicates the current node or cluster state, and is one of the following:
e cluster_disabled: The current node is completely unconfigured.

* single_node_disabled: The current node is configured as a single (standalone) node ([cluster]
n=1), but either does not have a server-level admin user defined, or does not have the standard sys-
tem databases created. If the ensure_dbs_exist query parameter is specified, the list of databases
provided overrides the default list of standard system databases.

* single_node_enabled: The current node is configured as a single (standalone) node, has a server-
level admin user defined, and has the ensure_dbs_exist list (explicit or default) of databases created.

300 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Apache CouchDB®, Release 3.3.3

¢ cluster_enabled: The current node has [cluster] n > 1, is not bound to 127.0.0.1 and has
a server-level admin user defined. However, the full set of standard system databases have not been
created yet. If the ensure_dbs_exist query parameter is specified, the list of databases provided
overrides the default list of standard system databases.

e cluster_finished: The current node has [cluster] n > 1, is not bound to 127.0.0.1, has a
server-level admin user defined and has the ensure_dbs_exist list (explicit or default) of databases
created.

Request:

GET /_cluster_setup HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

X-CouchDB-Body-Time: 0

X-Couch-Request-ID: 5c058bdd37

Server: CouchDB/2.1.0-7f17678 (Erlang OTP/17)
Date: Sun, 30 Jul 2017 06:33:18 GMT
Content-Type: application/json
Content-Length: 29

Cache-Control: must-revalidate

{"state":"cluster_enabled"}

POST /_cluster_setup

Configure a node as a single (standalone) node, as part of a cluster, or finalise a cluster.
Request Headers
* Accept —
— application/json
- text/plain
* Content-Type — application/json
Request JSON Object
e action (string) —

— enable_single_node: Configure the current node as a single, standalone CouchDB
server.

— enable_cluster: Configure the local or remote node as one node, preparing it to be
joined to a new CouchDB cluster.

— add_node: Add the specified remote node to this cluster’s list of nodes, joining it to
the cluster.

— finish_cluster: Finalise the cluster by creating the standard system databases.

* bind_address (string) — The IP address to which to bind the current node. The spe-
cial value 0.0.0.0 may be specified to bind to all interfaces on the host. (enable_cluster
and enable_single_node only)

e username (string) — The username of the server-level administrator to create. (en-
able_cluster and enable_single_node only), or the remote server’s administrator user-
name (add_node)

12.2. Server 301

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

Apache CouchDB®, Release 3.3.3

* password (string) — The password for the server-level administrator to create. (en-
able_cluster and enable_single_node only), or the remote server’s administrator user-
name (add_node)

* port (number) — The TCP port to which to bind this node (enable_cluster and en-
able_single_node only) or the TCP port to which to bind a remote node (add_node only).

* node_count (number) — The total number of nodes to be joined into the cluster, in-
cluding this one. Used to determine the value of the cluster’s n, up to a maximum of 3.
(enable_cluster only)

» remote_node (string) — The IP address of the remote node to setup as part of this
cluster’s list of nodes. (enable_cluster only)

e remote_current_user (string)— The username of the server-level administrator au-
thorized on the remote node. (enable_cluster only)

* remote_current_password (string) — The password of the server-level administra-
tor authorized on the remote node. (enable_cluster only)

* host (string) — The remote node IP of the node to add to the cluster. (add_node only)

» ensure_dbs_exist (array) — List of system databases to ensure exist on the

node/cluster. Defaults to ["_users","_replicator"].

No example request/response included here. For a worked example, please see The Cluster Setup API.

12.2.6 /_db_updates

New in version 1.4.

GET /_db_updates

Returns a list of all database events in the CouchDB instance. The existence of the _global_changes
database is required to use this endpoint.

Request Headers
* Accept —
— application/json
- text/plain
Query Parameters

e feed (string) -

normal: Returns all historical DB changes, then closes the connection. Default.

longpoll: Closes the connection after the first event.

continuous: Send a line of JSON per event. Keeps the socket open until timeout.

eventsource: Like, continuous, but sends the events in EventSource format.

e timeout (number) — Number of milliseconds until CouchDB closes the connection.
Default is 60000.

» heartbeat (number) — Period in milliseconds after which an empty line is sent in the
results. Only applicable for longpoll, continuous, and eventsource feeds. Over-
rides any timeout to keep the feed alive indefinitely. Default is 60000. May be true to
use default value.

 since (string)— Return only updates since the specified sequence ID. If the sequence
ID is specified but does not exist, all changes are returned. May be the string now to
begin showing only new updates.

Response Headers

302 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2
http://dev.w3.org/html5/eventsource/

Apache CouchDB®, Release 3.3.3

* Content-Type —
— application/json
— text/plain; charset=utf-8
* Transfer-Encoding — chunked
Response JSON Object

» results (array) — An array of database events. For longpoll and continuous
modes, the entire response is the contents of the results array.

» last_seq (string) — The last sequence ID reported.
Status Codes
* 200 OK — Request completed successfully
* 401 Unauthorized — CouchDB Server Administrator privileges required
The results field of database updates:
JSON Parameters
e db_name (string) — Database name.
e type (string) — A database event is one of created, updated, deleted.
* seq (json) — Update sequence of the event.

Request:

GET /_db_updates HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json

Date: Sat, 18 Mar 2017 19:01:35 GMT
Etag: "C1KU98Y6HOLGM7EQQYL6VSLO7"
Server: CouchDB/2.0.0 (Erlang OTP/17)
Transfer-Encoding: chunked
X-Couch-Request-ID: ad87efc7ff
X-CouchDB-Body-Time: ®

{
"results": [
{"db_name": "mailbox","type":"created","seq":"1-
+g1AAAAFRe] zLYWBg4MhgTmHgzcvPy091dcjLz8gvLskBCjMIMiTI ____
—PyuDOZExFy jAnmJhkWaeaIquGIf2JAUgmWQPMiGRAZcaB5CaePxqEkBq6vGqyWMBkgwNQAgobD4h"},
{"db_name": "mailbox","type":"deleted","seq":"2-
—~g1AAAAFRe]JzLYWBg4MhgTmHgzcvPy09J1dcjLz8gvLskBCjMIMiTI____
—PyuDOZEpFy jAnmJhkWaeaIquGIf2JAUgmWQPMiGRAZcaB5CaePxqEkBq6vGqyWMBkgwNQAgobD4hdQsgbvYTUncAoud -
- IXUPIOpA7ssCAIFHa60"},
1,
"last_seq": "2-glAAAAFRe]zLYWBg4MhgTmHgzcvPy®9JdcjLz8gvLskBCjMIMiTI ___

—PyuDOZEpFy jAnmJhkWaeaIquGIf2JAUgmWQPMiGRAZcaB5CaePxqgEkBq6vGqyWMBkgwNQAgobD4hdQsgbvYTUncAoud-
- IXUPIOpA7ssCAIFHa60"

}

12.2. Server 303

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7230#section-3.3.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

12.2.7 /_membership

New in version 2.0.

GET /_membership

Displays the nodes that are part of the cluster as cluster_nodes. The field all_nodes displays all nodes
this node knows about, including the ones that are part of the cluster. The endpoint is useful when setting up
a cluster, see Node Management

Request Headers
* Accept —
— application/json
— text/plain
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Status Codes
* 200 OK — Request completed successfully
Request:

GET /_membership HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Sat, 11 Jul 2015 07:02:41 GMT
Server: CouchDB (Erlang/OTP)
Content-Length: 142

{
"all_nodes": [
"nodel@127.0.0.1",
"node2@127.0.0.1",
"node3@127.0.0.1"

(==}

1,

"cluster_nodes":
"nodel@127.0.
"node2@127.0.
"node3@127.0.

. 1",
17,
L1

2o @2 m

304

Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Apache CouchDB®, Release 3.3.3

12.2.8 /_replicate

Changed in version 3.3: Added “bulk_get_attempts” and “bulk_get docs” fields to the replication history response

object.

POST /_replicate

Request, configure, or stop, a replication operation.

Request Headers

* Accept —
— application/json
- text/plain

* Content-Type — application/json

Request JSON Object

* cancel (boolean) — Cancels the replication
» continuous (boolean) — Configure the replication to be continuous

* create_target (boolean) — Creates the target database. Required administrator’s
privileges on target server.

* create_target_params (object) — An object that contains parameters to be used
when creating the target database. Can include the standard q and n parameters.

* winning_revs_only (boolean) — Replicate winning revisions only.

* doc_ids (array) — Array of document IDs to be synchronized. doc_ids, filter, and
selector are mutually exclusive.

o filter (string) — The name of a filter function. doc_ids, filter, and selector
are mutually exclusive.

» selector (json) — A selector to filter documents for synchronization. Has the same
behavior as the selector objects in replication documents. doc_ids, filter, and
selector are mutually exclusive.

* source_proxy (string) — Address of a proxy server through which replication from
the source should occur (protocol can be “http” or “socks5”)

* target_proxy (string)— Address of a proxy server through which replication to the
target should occur (protocol can be “http” or “socks5”)

» source (string/object) — Fully qualified source database URL or an object which
contains the full URL of the source database with additional parameters like head-
ers. Eg: ‘http://example.com/source_db_name’ or {“url”:’url in here”, “headers”:
{“header1”:”valuel”, ...}} . For backwards compatibility, CouchDB 3.x will auto-
convert bare database names by prepending the address and port CouchDB is listening
on, to form a complete URL. This behaviour is deprecated in 3.x and will be removed in
CouchDB 4.0.

* target (string/object) — Fully qualified target database URL or an object which
contains the full URL of the target database with additional parameters like head-
ers. Eg: ‘http://example.com/target_db_name’ or {*“url”:”url in here”, “headers”:
{“header1”:”valuel”, ...}} . For backwards compatibility, CouchDB 3.x will auto-
convert bare database names by prepending the address and port CouchDB is listening
on, to form a complete URL. This behaviour is deprecated in 3.x and will be removed in
CouchDB 4.0.

Response Headers

* Content-Type —

— application/json

12.2. Server

305

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://example.com/source_db_name
http://example.com/target_db_name
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

Apache CouchDB®, Release 3.3.3

— text/plain; charset=utf-8

Response JSON Object

history (array) — Replication history (see below)

ok (boolean) — Replication status

replication_id_version (number) — Replication protocol version
session_id (string) — Unique session ID

source_last_seq (number) — Last sequence number read from source database

Status Codes

200 OK — Replication request successfully completed

202 Accepted — Continuous replication request has been accepted

400 Bad Request — Invalid JSON data

401 Unauthorized — CouchDB Server Administrator privileges required

404 Not Found — Either the source or target DB is not found or attempt to cancel unknown
replication task

500 Internal Server Error — JSON specification was invalid

The specification of the replication request is controlled through the JSON content of the request. The JSON
should be an object with the fields defining the source, target and other options.

The Replication history is an array of objects with following structure:

JSON Parameters

doc_write_failures (number) — Number of document write failures
docs_read (number) — Number of documents read
docs_written (number) — Number of documents written to target

bulk_get_attempts (number) — The total count of attempted doc revisions fetched
with _bulk_get.

bulk_get_docs (number) — The total count of successful docs fetched with
_bulk_get.

end_last_seq (number) — Last sequence number in changes stream

end_time (string) — Date/Time replication operation completed in RFC 2822 format
missing_checked (number) — Number of missing documents checked
missing_found (number) — Number of missing documents found

recorded_seq (number) — Last recorded sequence number

session_id (string) — Session ID for this replication operation

start_last_seq (number) — First sequence number in changes stream

start_time (string) — Date/Time replication operation started in RFC 2822 format

Note: As of CouchDB 2.0.0, fully qualified URLs are required for both the replication source and target

parameters.

Request

306

Chapter 12. API Reference

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://datatracker.ietf.org/doc/html/rfc2822.html
https://datatracker.ietf.org/doc/html/rfc2822.html

Apache CouchDB®, Release 3.3.3

POST /_replicate HTTP/1.1
Accept: application/json
Content-Length: 80
Content-Type: application/json
Host: localhost:5984

{
"source": "http://127.0.0.1:5984/db_a",
"target": "http://127.0.0.1:5984/db_b"
}
Response

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 692

Content-Type: application/json
Date: Sun, 11 Aug 2013 20:38:50 GMT
Server: CouchDB (Erlang/OTP)

{
"history": [
{
"doc_write_failures": 0,
"docs_read": 10,
"bulk_get_attempts": 10,
"bulk_get_docs": 10,
"docs_written": 10,
"end_last_seq": 28,
"end_time": "Sun, 11 Aug 2013 20:38:50 GMT",
"missing_checked": 10,
"missing_found": 10,
"recorded_seq": 28,
"session_id": "142a35854a08e205c47174d91b1£9628",
"start_last_seq": 1,
"start_time": "Sun, 11 Aug 2013 20:38:50 GMT"

1,
{
"doc_write_failures": 0,
"docs_read": 1,
"bulk_get_attempts": 1,
"bulk_get_docs": 1,
"docs_written": 1,
"end_last_seq": 1,
"end_time": "Sat, 10 Aug 2013 15:41:54 GMT",
"missing_checked": 1,
"missing_found": 1,
"recorded_seq": 1,
"session_id": "6314f35c51de3ac408af79d6ee®clal®9",
"start_last_seq": 0,
"start_time": "Sat, 10 Aug 2013 15:41:54 GMT"
}
1,
"ok": true,

"replication_id_version": 3,
"session_id": "142a35854a08e205c47174d91b1£9628",
"source_last_seq": 28

(continues on next page)

12.2. Server 307

Apache CouchDB®, Release 3.3.3

(continued from previous page)

Replication Operation

The aim of the replication is that at the end of the process, all active documents on the source database are also in
the destination database and all documents that were deleted in the source databases are also deleted (if they exist)
on the destination database.

Replication can be described as either push or pull replication:
e Pull replication is where the source is the remote CouchDB instance, and the target is the local database.

Pull replication is the most useful solution to use if your source database has a permanent IP address, and
your destination (local) database may have a dynamically assigned IP address (for example, through DHCP).
This is particularly important if you are replicating to a mobile or other device from a central server.

e Push replication is where the source is a local database, and target is a remote database.

Specifying the Source and Target Database
You must use the URL specification of the CouchDB database if you want to perform replication in either of the
following two situations:
* Replication with a remote database (i.e. another instance of CouchDB on the same host, or a different host)
* Replication with a database that requires authentication

For example, to request replication between a database local to the CouchDB instance to which you send the request,
and a remote database you might use the following request:

POST http://couchdb:5984/_replicate HTTP/1.1
Content-Type: application/json
Accept: application/json

{
"source" : "recipes",
"target" : "http://coucdb-remote:5984/recipes”,

In all cases, the requested databases in the source and target specification must exist. If they do not, an error
will be returned within the JSON object:

{
"error" : "db_not_found"
"reason" : "could not open http://couchdb-remote:5984/0l1ka/",

You can create the target database (providing your user credentials allow it) by adding the create_target field
to the request object:

POST http://couchdb:5984/_replicate HTTP/1.1
Content-Type: application/json
Accept: application/json

{
"create_target" : true
"source" : "recipes",

(continues on next page)

308 Chapter 12. API Reference

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"target" : "http://couchdb-remote:5984/recipes”,

The create_target field is not destructive. If the database already exists, the replication proceeds as normal.

Single Replication

You can request replication of a database so that the two databases can be synchronized. By default, the replication
process occurs one time and synchronizes the two databases together. For example, you can request a single
synchronization between two databases by supplying the source and target fields within the request JSON
content.

POST http://couchdb:5984/_replicate HTTP/1.1
Accept: application/json
Content-Type: application/json

{
"source" : "recipes",
"target" : "recipes-snapshot",

In the above example, the databases recipes and recipes-snapshot will be synchronized. These databases are
local to the CouchDB instance where the request was made. The response will be a JSON structure containing the
success (or failure) of the synchronization process, and statistics about the process:

{
"ok" : true,
"history" : [
{
"docs_read" : 1000,
"bulk_get_attempts": 1000,
"bulk_get_docs": 1000,
"session_id" : "52c2370£5027043d286dacad4de247db0",
"recorded_seq" : 1000,
"end_last_seq" : 1000,
"doc_write_failures" : O,
"start_time" : "Thu, 28 Oct 2010 10:24:13 GMT",
"start_last_seq" : 0,
"end_time" : "Thu, 28 Oct 2010 10:24:14 GMT",
"missing_checked" : O,
"docs_written" : 1000,
"missing_found" : 1000
}

1,

"session_id" : "52c2370£5027043d286dacad4de247db0",

"source_last_seq" : 1000

}

12.2. Server 309

Apache CouchDB®, Release 3.3.3

Continuous Replication

Synchronization of a database with the previously noted methods happens only once, at the time the replicate
request is made. To have the target database permanently replicated from the source, you must set the continuous
field of the JSON object within the request to true.

With continuous replication changes in the source database are replicated to the target database in perpetuity until
you specifically request that replication ceases.

POST http://couchdb:5984/_replicate HTTP/1.1
Accept: application/json
Content-Type: application/json

{

"continuous" : true

"source" : "recipes",

"target" : "http://couchdb-remote:5984/recipes”,
}

Changes will be replicated between the two databases as long as a network connection is available between the two
instances.

Note: Two keep two databases synchronized with each other, you need to set replication in both directions; that
is, you must replicate from source to target, and separately from target to source.

Canceling Continuous Replication

You can cancel continuous replication by adding the cancel field to the JSON request object and setting the value
to true. Note that the structure of the request must be identical to the original for the cancellation request to be
honoured. For example, if you requested continuous replication, the cancellation request must also contain the
continuous field.

For example, the replication request:

POST http://couchdb:5984/_replicate HTTP/1.1
Content-Type: application/json
Accept: application/json

{
"source" : "recipes",
"target" : "http://couchdb-remote:5984/recipes",
"create_target" : true,
"continuous" : true
}

Must be canceled using the request:

POST http://couchdb:5984/_replicate HTTP/1.1
Accept: application/json
Content-Type: application/json

{
"cancel" : true,
"continuous" : true
"create_target" : true,
"source" : "recipes",

(continues on next page)

310 Chapter 12. API Reference

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"target" : "http://couchdb-remote:5984/recipes”,

Requesting cancellation of a replication that does not exist results in a 404 error.

12.2.9 /_scheduler/jobs

GET /_scheduler/jobs

List of replication jobs. Includes replications created via /_replicate endpoint as well as those created from
replication documents. Does not include replications which have completed or have failed to start because
replication documents were malformed. Each job description will include source and target information,
replication id, a history of recent event, and a few other things.

Request Headers
e Accept —
— application/json
Response Headers
* Content-Type —
— application/json
Query Parameters
e limit (number) — How many results to return

* skip (number) — How many result to skip starting at the beginning, ordered by replica-
tion ID

Response JSON Object

» offset (number) — How many results were skipped

* total_rows (number) — Total number of replication jobs

* id (string) — Replication ID.

» database (string) — Replication document database

* doc_id (string) — Replication document ID

* history (1ist) - Timestamped history of events as a list of objects

* pid (string) — Replication process ID

* node (string) — Cluster node where the job is running

* source (string) — Replication source

* target (string) — Replication target

* start_time (string) — Timestamp of when the replication was started
Status Codes

* 200 OK — Request completed successfully

* 401 Unauthorized — CouchDB Server Administrator privileges required

Request:

GET /_scheduler/jobs HTTP/1.1
Accept: application/json
Host: localhost:5984

12.2. Server 311

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 1690

Content-Type: application/json
Date: Sat, 29 Apr 2017 05:05:16 GMT
Server: CouchDB (Erlang/OTP)

{
"jobs": [
{
"database": "_replicator",
"doc_id": "cdyno-0000001-0000003",
"history": [
{
"timestamp": "2017-04-29T05:01:37Z",
"type": "started"
} ’
{
"timestamp": "2017-04-29T05:01:37Z",
"type": "added"
}
1,
"id": "8£f5b1bd®be6f9166ccfd36fc8be8fc22+continuous”,
"info": {

"changes_pending": 0,

"checkpointed_source_seq": "113-
<.g1AAAACTeJzLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQ1LI___
—-szKYEO®1ygQLsZsYGqcamiZ jKcRqRxwIkGRgA1H-0SbZgk IKMLCzTDEOwdWUBAF6HIIQ",

"doc_write_failures": 0,

"docs_read": 113,

"docs_written": 113,

"bulk_get_attempts": 113,

"bulk_get_docs": 113,

"missing_revisions_found": 113,

"revisions_checked": 113,

"source_seq": "113-
—g1AAAACTe]zLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQ1L9____
—,szKYEQ1ygQLsZsYGqcamiZjKcRqRxwIkGRgA 1H-0SbZgk 1KMLCzTDEOwdWUBAF6HIIQ",

"through_seq": "113-
—g1AAAACTelzLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQ1L9____
—szKYE®1ygQLsZsYGqcamiZ jKcRqRxwIkGRgA 1H-0SbZgk 1IKMLCzTDEOwdWUBAF6HIIQ"

1,

"node": "nodel@127.0.0.1",

"pid": "<0.1850.0>",

"source": "http://myserver.com/foo",

"start_time": "2017-04-29T05:01:37Z",

"target": "http://adm:*****@localhost:15984/cdyno-0000003/",
"user": null

}’
{
"database": "_replicator",
"doc_id": "cdyno-0000001-0000002",
"history": [
{

"timestamp": "2017-04-29T05:01:37Z",

(continues on next page)

312

Chapter 12. API Reference

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"type": "started"
1,
{
"timestamp": "2017-04-29T05:01:37Z",
"type": "added"
}
1,
"id": "e327d79214831cad4c11550b4a453c9ba+continuous”,
"info": {

"changes_pending": null,
"checkpointed_source_seq": 0,
"doc_write_failures": 0,
"docs_read": 12,
"docs_written": 12,
"bulk_get_attempts": 12,
"bulk_get_docs": 12,
"missing_revisions_found": 12,
"revisions_checked": 12,
"source_seq": "12-
< g1AAAACTeJzLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQ1LI____
»5zKYE11zgQLsBsZm5pZ]Jp jKcRqRxwIkGRgA1H-0Sexgk4yMKhITjSOwdWUBADfEJBg",
"through_seq": "12-
—g1AAAACTelzLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQ1L9____
—szKYE11zgQLsBsZm5pZJ JpjKcRqRxwIkGRgA1H-0Sexgk4yMKkhIT jSOwdWUBADfEJIBg"
1,
"node": "node2@127.0.0.1",
"pid": "<0.1757.0>",

"source": "http://myserver.com/foo",
"start_time": "2017-04-29T05:01:37Z",
"target": "http://adm:*****@localhost:15984/cdyno-0000002/",
"user": null
3
1,
"offset": 0,

"total_rows": 2

12.2.10 /_scheduler/docs

Changed in version 2.1.0: Use this endpoint to monitor the state of document-based replications. Previously needed
to poll both documents and _active_tasks to get a complete state summary

Changed in version 3.0.0: In error states the “info” field switched from being a string to being an object
Changed in version 3.3: Added “bulk_get_attempts” and “bulk_get_docs” the “info” object.
GET /_scheduler/docs

List of replication document states. Includes information about all the documents, even in completed and

failed states. For each document it returns the document ID, the database, the replication ID, source and
target, and other information.

Request Headers
* Accept —
— application/json

Response Headers

12.2. Server 313

https://tools.ietf.org/html/rfc7231#section-5.3.2

Apache CouchDB®, Release 3.3.3

* Content-Type —
— application/json
Query Parameters
* limit (number) — How many results to return

* skip (number) — How many result to skip starting at the beginning, if ordered by doc-
ument [D

Response JSON Object
» offset (number) — How many results were skipped
* total_rows (number) — Total number of replication documents.
» id (string) — Replication ID, or null if state is completed or failed

* state (string) — One of following states (see Replication states for descriptions):
initializing, running, completed, pending, crashing, error, failed

» database (string) — Database where replication document came from
* doc_id (string) — Replication document ID

* node (string) — Cluster node where the job is running

* source (string) — Replication source

* target (string) — Replication target

e start_time (string) — Timestamp of when the replication was started
» last_updated (string) — Timestamp of last state update

* info (object) — Will contain additional information about the state. For errors, this
will be an object with an "error" field and string value. For success states, see below.

e error_count (number) — Consecutive errors count. Indicates how many times in a
row this replication has crashed. Replication will be retried with an exponential backoft
based on this number. As soon as the replication succeeds this count is reset to 0. To
can be used to get an idea why a particular replication is not making progress.

Status Codes
* 200 OK — Request completed successfully
* 401 Unauthorized — CouchDB Server Administrator privileges required
The info field of a scheduler doc:
JSON Parameters

e revisions_checked (number)— The count of revisions which have been checked since
this replication began.

* missing_revisions_found (number) — The count of revisions which were found on
the source, but missing from the target.

docs_read (number) — The count of docs which have been read from the source.
» docs_written (number) — The count of docs which have been written to the target.

* bulk_get_attempts (number) — The total count of attempted doc revisions fetched
with _bulk_get.

bulk_get_docs (number) — The total count of successful docs fetched with
_bulk_get.

» changes_pending (number) — The count of changes not yet replicated.

» doc_write_failures (number) — The count of docs which failed to be written to the
target.

314 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

» checkpointed_source_seq (object) — The source sequence id which was last suc-
cessfully replicated.

Request:

GET /_scheduler/docs HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Content-Type: application/json

Date: Sat, 29 Apr 2017 05:10:08 GMT
Server: Server: CouchDB (Erlang/OTP)
Transfer-Encoding: chunked

{
"docs": [
{
"database": "_replicator",
"doc_id": "cdyno-0000001-0000002",
"error_count": 0,
"id": "e327d79214831ca4c11550b4a453c9ba+continuous"”,
"info": {

"changes_pending": 15,

"checkpointed_source_seq": "60-
—g1AAAACTe]zLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQ1L9____
<szKYEyVygQLsBsZm5pZ]JpjKcRqRxwIKGRGA 1H-0SSpgk4yMKhITjSOwdWUBAENCIEG",

"doc_write_failures": 0,

"docs_read": 67,

"bulk_get_attempts": 67,

"bulk_get_docs": 67,

"docs_written": 67,

"missing_revisions_found": 67,

"revisions_checked": 67,

"source_seq": "67-
—g1AAAACTeJzLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQIL9____
—szKYE2VygQLsBsZm5pZJ JpjKcRqRxwIkGRgA1H-0Sepgk4yMKhIT j SOwdWUBAEVKJES",

"through_seq": "67-
—,g1AAAACTeJzLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQ1LI____
—+szKYE2VygQLsBsZm5pZ] Jp jKcRqRxwIkGRgA1H-0Sepgk4yMKhITjSOwdWUBAEVKIES"

1,

"last_updated": "2017-04-29T05:01:37Z",
"node": "node2@127.0.0.1",
"source_proxy": null,

"target_proxy": null,

"source": "http://myserver.com/foo",

"start_time": "2017-04-29T05:01:37Z",

"state": "running",

"target": "http://adm:*****@localhost:15984/cdyno-0000002/"
3,
{

"database": "_replicator",

"doc_id": "cdyno-0000001-0000003",

"error_count": 0,

"id": "8£f5b1bd®be6f9166ccfd36fc8be8fc22+continuous”,
"info": {

(continues on next page)

12.2. Server 315

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"changes_pending": null,
"checkpointed_source_seq": 0,
"doc_write_failures": 0,
"bulk_get_attempts": 12,

"bulk_get_docs": 12,

"docs_read": 12,

"docs_written": 12,

"missing_revisions_found": 12,

"revisions_checked": 12,

"source_seq": "12-
—.g1AAAACTeJzZLYWBgYMpgTmHgz8 tPSTVOMDQy 1zMAQsMckEQiQILI___
—5zKYE11zgQLsBsZm5pZJ JpjKcRqRxwIkGRgA1H-0Sexgk4yMkhIT jSOwdWUBADfE]Bg",

"through_seq": "12-
<+g1AAAACTe]zLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQ1L9____

+szKYE11zgQLsBsZm5pZJ] Jp jKcRqRxwIkGRgA1H-0Sexgk4yMKhITjSOwdWUBADfEIBg"
1,

"last_updated": "2017-04-29T05:01:37Z",
"node": "nodel@127.0.0.1",
"source_proxy": null,

"target_proxy": null,

"source": "http://myserver.com/foo",
"start_time": "2017-04-29T05:01:37Z",
"state": "running",
"target": "http://adm:*****@localhost:15984/cdyno-0000003/"
}
1,
"offset": O,

"total_rows": 2

GET /_scheduler/docs/{replicator_db}

Get information about replication documents from a replicator database. The default replicator database is
_replicator but other replicator databases can exist if their name ends with the suffix /_replicator.

Note: As a convenience slashes (/) in replicator db names do not have to be escaped. So /_scheduler/
docs/other/_replicator is valid and equivalent to /_scheduler/docs/other%2f_replicator

Request Headers
* Accept —
— application/json
Response Headers
* Content-Type —
— application/json
Query Parameters

e limit (number) — How many results to return

* skip (number) — How many result to skip starting at the beginning, if ordered by doc-
ument ID

Response JSON Object
» offset (number) — How many results were skipped

* total_rows (number) — Total number of replication documents.

316 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

Apache CouchDB®, Release 3.3.3

 id (string) — Replication ID, or null if state is completed or failed

* state (string) — One of following states (see Replication states for descriptions):
initializing, running, completed, pending, crashing, error, failed

» database (string) — Database where replication document came from
* doc_id (string) — Replication document ID

* node (string) — Cluster node where the job is running

* source (string) — Replication source

* target (string)— Replication target

e start_time (string) — Timestamp of when the replication was started
* last_update (string) — Timestamp of last state update

» info (object) — Will contain additional information about the state. For errors, this
will be an object with an "error" field and string value. For success states, see below.

e error_count (number) — Consecutive errors count. Indicates how many times in a
row this replication has crashed. Replication will be retried with an exponential backoft
based on this number. As soon as the replication succeeds this count is reset to 0. To
can be used to get an idea why a particular replication is not making progress.

Status Codes
* 200 OK — Request completed successfully

* 401 Unauthorized — CouchDB Server Administrator privileges required

The info field of a scheduler doc:
JSON Parameters

e revisions_checked (number)— The count of revisions which have been checked since
this replication began.

e missing_revisions_found (number) — The count of revisions which were found on
the source, but missing from the target.

docs_read (number) — The count of docs which have been read from the source.
* docs_written (number) — The count of docs which have been written to the target.

* bulk_get_attempts (number) — The total count of attempted doc revisions fetched
with _bulk_get.

bulk_get_docs (number) — The total count of successful docs fetched with
_bulk_get.

» changes_pending (number) — The count of changes not yet replicated.

e doc_write_failures (number) — The count of docs which failed to be written to the
target.

» checkpointed_source_seq (object) — The source sequence id which was last suc-
cessfully replicated.

Request:

GET /_scheduler/docs/other/_replicator HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

12.2. Server 317

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

HTTP/1.1 200 OK

Content-Type: application/json

Date: Sat, 29 Apr 2017 05:10:08 GMT
Server: Server: CouchDB (Erlang/O0TP)
Transfer-Encoding: chunked

{
"docs": [
{
"database": "other/_replicator",
"doc_id": "cdyno-0000001-0000002",
"error_count": 0,

"id": "e327d79214831ca4c11550b4a453c9ba+continuous"”,

"info": {
"changes_pending": 0,
"checkpointed_source_seq": "60-

—,g1AAAACTe]zLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQILI____
—szKYEyVygQLsBsZm5pZ] Jp jKcRqRxwIkGRgA1H-0SSpgk4yMkhITjSOwdWUBAENCIEgG",

"doc_write_failures": 0,

"docs_read": 67,

"bulk_get_attempts": 67,

"bulk_get_docs": 67,

"docs_written": 67,

"missing_revisions_found": 67,

"revisions_checked": 67,

"source_seq": "67-
—,g1AAAACTeJzLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQSMckEQiQILI____
—szKYE2VygQLsBsZm5pZ] IJp jKcRqRxwIkGRgA1H-0Sepgk4yMKhITjSOwdWUBAEVKJES",

"through_seq": "67-
—gl1AAAACTe]zLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQ1L9____
—szKYE2VygQLsBsZm5pZ] Jp jKcRqRxwIkGRgA1H-0Sepgk4yMKkhIT j SOwdWUBAEVKJES"

1,

"last_updated": "2017-04-29T05:01:37Z",
"node": "node2@127.0.0.1",
"source_proxy": null,

"target_proxy": null,

"source": "http://myserver.com/foo",
"start_time": "2017-04-29T05:01:37Z",
"state": "running",
"target": "http://adm:*****@localhost:15984/cdyno-0000002/"
}
1,
"offset": 0,

"total_rows": 1

GET /_scheduler/docs/{replicator_db}/{docid}

Note: As a convenience slashes (/) in replicator db names do not have to be escaped. So /_scheduler/
docs/other/_replicator is valid and equivalent to /_scheduler/docs/other%2f_replicator

Request Headers
* Accept —

— application/json

318

Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2

Apache CouchDB®, Release 3.3.3

Response Headers

Content-Type —

— application/json

Response JSON Object

id (string) — Replication ID, or null if state is completed or failed

state (string) — One of following states (see Replication states for descriptions):
initializing, running, completed, pending, crashing, error, failed

database (string) — Database where replication document came from
doc_id (string) — Replication document ID

node (string) — Cluster node where the job is running

source (string) — Replication source

target (string) — Replication target

start_time (string) — Timestamp of when the replication was started
last_update (string) — Timestamp of last state update

info (object) — Will contain additional information about the state. For errors, this
will be an object with an "error" field and string value. For success states, see below.

error_count (number) — Consecutive errors count. Indicates how many times in a
row this replication has crashed. Replication will be retried with an exponential backoff
based on this number. As soon as the replication succeeds this count is reset to 0. To
can be used to get an idea why a particular replication is not making progress.

Status Codes

200 OK — Request completed successfully

401 Unauthorized — CouchDB Server Administrator privileges required

The info field of a scheduler doc:
JSON Parameters

revisions_checked (number)— The count of revisions which have been checked since
this replication began.

missing_revisions_found (number) — The count of revisions which were found on
the source, but missing from the target.

docs_read (number) — The count of docs which have been read from the source.
docs_written (number) — The count of docs which have been written to the target.

bulk_get_attempts (number) — The total count of attempted doc revisions fetched
with _bulk_get.

bulk_get_docs (number) — The total count of successful docs fetched with
_bulk_get.

changes_pending (number) — The count of changes not yet replicated.

doc_write_failures (number) — The count of docs which failed to be written to the
target.

checkpointed_source_seq (object) —

The source sequence id which was last
successfully replicated.

Request:

12.2. Server

319

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

GET /_scheduler/docs/other/_replicator/cdyno-0000001-0000002 HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Content-Type: application/json

Date: Sat, 29 Apr 2017 05:10:08 GMT
Server: Server: CouchDB (Erlang/OTP)
Transfer-Encoding: chunked

{
"database": "other/_replicator",
"doc_id": "cdyno-0000001-0000002",
"error_count": 0,
"id": "e327d79214831ca4c11550b4a453c9ba+continuous"”,

"info": {
"changes_pending": 0,
"checkpointed_source_seq": "60-

—,g1AAAACTeJzLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQSMckEQiQILI____
—szKYEyVygQLsBsZm5pZ] Jp jKcRqRxwIkGRgA1H-0SSpgk4yMKkhITjSOwdWUBAENCIEgG",
"doc_write_failures": 0,
"docs_read": 67,
"bulk_get_attempts": 67,
"bulk_get_docs": 67,
"docs_written": 67,
"missing_revisions_found": 67,
"revisions_checked": 67,
"source_seq": "67-glAAAACTe]zLYWBgYMpgTmHgz8tPSTVOMDQy1zMAQsMckEQiQ1L9
«_szKYE2VygQLsBsZm5pZJ Jp jKcRqRxwIkGRgA1H-0Sepgk4yMKkhITjSOwdWUBAEVKIES",
"through_seq": "67-gl1AAAACTe]zLYWBgYMpgTmHgz8tPSTVOMDQy 1zMAQsMckEQiQILI__
—__szKYE2VygQLsBsZm5pZJ JpjKcRqRxwIkGRgA1H-0Sepgk4yMKkhITjSOwdWUBAEVKIES"
3,
"last_updated": "2017-04-29T05:01:37Z",
"node": "node2@127.0.0.1",
"source_proxy": null,
"target_proxy": null,

"source": "http://myserver.com/foo",

"start_time": "2017-04-29T05:01:37Z",

"state": "running",

"target": "http://adm:*****@localhost:15984/cdyno-0000002/"

12.2.11 /_node/{node-name}

GET /_node/{node-name}

The /_node/{node-name} endpoint can be used to confirm the Erlang node name of the server that pro-
cesses the request. This is most useful when accessing /_node/_local to retrieve this information. Repeat-
edly retrieving this information for a CouchDB endpoint can be useful to determine if a CouchDB cluster is
correctly proxied through a reverse load balancer.

Request Headers
* Accept —

— application/json

320 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2

Apache CouchDB®, Release 3.3.3

— text/plain
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Status Codes
* 200 OK — Request completed successfully
Request:

GET /_node/_local HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 27

Content-Type: application/json
Date: Tue, 28 Jan 2020 19:25:51 GMT
Server: CouchDB (Erlang OTP)
X-Couch-Request-ID: 5b8db6c677
X-CouchDB-Body-Time: @

{"name":"nodel1@127.0.0.1"}

12.2.12 /_node/{node-name}/_stats

GET /_node/{node-name}/_stats

The _stats resource returns a JSON object containing the statistics for the running server. The object is
structured with top-level sections collating the statistics for a range of entries, with each individual statistic
being easily identified, and the content of each statistic is self-describing.

Statistics are sampled internally on a configurable interval. When monitoring the _stats endpoint, you
need to use a polling frequency of at least twice this to observe accurate results. For example, if the interval

is 10 seconds, poll _stats at least every 5 seconds.

The literal string _local serves as an alias for the local node name, so for all stats URLs, {node-name}
may be replaced with _local, to interact with the local node’s statistics.

Request Headers
* Accept —
— application/json
- text/plain
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Status Codes

* 200 OK — Request completed successfully

12.2. Server

321

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Apache CouchDB®, Release 3.3.3

Request:

GET /_node/_local/_stats/couchdb/request_time HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 187

Content-Type: application/json
Date: Sat, 10 Aug 2013 11:41:11 GMT
Server: CouchDB (Erlang/OTP)

{
"value": {
"min": O,
"max": O,

"arithmetic_mean": 0,
"geometric_mean": 0,
"harmonic_mean": 0,
"median": 0,

"variance": 0,
"standard_deviation": 0,
"skewness": 0,
"kurtosis": 0,
"percentile": [

1,
"histogram": [
[
9,
0

(continues on next page)

322

Chapter 12. API Reference

Apache CouchDB®, Release 3.3.3

(continued from previous page)

1,
"n": @
}

ype": "histogram",
"desc": "length of a request inside CouchDB without MochiWeb"

The fields provide the current, minimum and maximum, and a collection of statistical means and quantities. The
quantity in each case is not defined, but the descriptions below provide sufficient detail to determine units.

Statistics are reported by ‘group’. The statistics are divided into the following top-level sections:

couch_log: Logging subsystem

couch_replicator: Replication scheduler and subsystem
couchdb: Primary CouchDB database operations

fabric: Cluster-related operations

global_changes: Global changes feed

mem3: Node membership-related statistics

pread: CouchDB file-related exceptions

rexi: Cluster internal RPC-related statistics

The type of the statistic is included in the type field, and is one of the following:

counter: Monotonically increasing counter, resets on restart
histogram: Binned set of values with meaningful subdivisions. Scoped to the current collection interval.

gauge: Single numerical value that can go up and down

You can also access individual statistics by quoting the statistics sections and statistic ID as part of the URL path.
For example, to get the request_time statistics within the couchdb section for the target node, you can use:

GET /_node/_local/_stats/couchdb/request_time HTTP/1.1

This returns an entire statistics object, as with the full request, but containing only the requested individual statistic.

12.2.13 /_node/{node-name}/_prometheus

GET /_node/{node-name}/_prometheus

The _prometheus resource returns a text/plain response that consolidates our /_node/{node-name}/_stats,
and /_node/{node-name}/_system endpoints. The format is determined by Prometheus. The format version
is 2.0.

Request:

GET /_node/_local/_prometheus HTTP/1.1
Accept: text/plain
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 187

Content-Type: text/plain; version=2.0
Date: Sat, 10 May 2020 11:41:11 GMT

(continues on next page)

12.2.

Server 323

https://prometheus.io/docs/introduction/overview/

Apache CouchDB®, Release 3.3.3

(continued from previous page)

Server: CouchDB (Erlang/O0TP)

TYPE couchdb_couch_log_requests_total counter
couchdb_couch_log_requests_total{level="alert"} 0
couchdb_couch_log_requests_total{level="critical"} 0
couchdb_couch_log_requests_total{level="debug"} 0®
couchdb_couch_log_requests_total{level="emergency"} 0
couchdb_couch_log_requests_total{level="error"} 0
couchdb_couch_log_requests_total{level="info"} 8
couchdb_couch_log_requests_total{level="notice"} 51
couchdb_couch_log_requests_total{level="warning"} 0

TYPE couchdb_couch_replicator_changes_manager_deaths_total counter
couchdb_couch_replicator_changes_manager_deaths_total 0

TYPE couchdb_couch_replicator_changes_queue_deaths_total counter
couchdb_couch_replicator_changes_queue_deaths_total 0

TYPE couchdb_couch_replicator_changes_read_failures_total counter
couchdb_couch_replicator_changes_read_failures_total

TYPE couchdb_couch_replicator_changes_reader_deaths_total counter
couchdb_couch_replicator_changes_reader_deaths_total

TYPE couchdb_couch_replicator_checkpoints_failure_total counter
couchdb_couch_replicator_checkpoints_failure_total ®

TYPE couchdb_couch_replicator_checkpoints_total counter
couchdb_couch_replicator_checkpoints_total 0

TYPE couchdb_couch_replicator_cluster_is_stable gauge
couchdb_couch_replicator_cluster_is_stable 1

TYPE couchdb_couch_replicator_connection_acquires_total counter
couchdb_couch_replicator_connection_acquires_total 0

TYPE couchdb_couch_replicator_connection_closes_total counter
couchdb_couch_replicator_connection_closes_total 0

TYPE couchdb_couch_replicator_connection_creates_total counter
couchdb_couch_replicator_connection_creates_total 0

TYPE couchdb_couch_replicator_connection_owner_crashes_total counter
couchdb_couch_replicator_connection_owner_crashes_total 0

TYPE couchdb_couch_replicator_connection_releases_total counter
couchdb_couch_replicator_connection_releases_total 0

TYPE couchdb_couch_replicator_connection_worker_crashes_total counter
couchdb_couch_replicator_connection_worker_crashes_total 0

TYPE couchdb_couch_replicator_db_scans_total counter
couchdb_couch_replicator_db_scans_total 1

TYPE couchdb_couch_replicator_docs_completed_state_updates_total counter
couchdb_couch_replicator_docs_completed_state_updates_total 0

TYPE couchdb_couch_replicator_docs_db_changes_total counter
couchdb_couch_replicator_docs_db_changes_total 0

TYPE couchdb_couch_replicator_docs_dbs_created_total counter
couchdb_couch_replicator_docs_dbs_created_total 0

TYPE couchdb_couch_replicator_docs_dbs_deleted_total counter
couchdb_couch_replicator_docs_dbs_deleted_total 0

TYPE couchdb_couch_replicator_docs_dbs_found_total counter
couchdb_couch_replicator_docs_dbs_found_total 2

TYPE couchdb_couch_replicator_docs_failed_state_updates_total counter
couchdb_couch_replicator_docs_failed_state_updates_total 0

TYPE couchdb_couch_replicator_failed_starts_total counter
couchdb_couch_replicator_failed_starts_total 0

TYPE couchdb_couch_replicator_jobs_adds_total counter
couchdb_couch_replicator_jobs_adds_total 0

TYPE couchdb_couch_replicator_jobs_crashed gauge

(continues on next page)

324

Chapter 12. API Reference

Apache CouchDB®, Release 3.3.3

(continued from previous page)

couchdb_couch_replicator_jobs_crashed 0

TYPE couchdb_couch_replicator_jobs_crashes_total counter
couchdb_couch_replicator_jobs_crashes_total 0

TYPE couchdb_couch_replicator_jobs_duplicate_adds_total counter
couchdb_couch_replicator_jobs_duplicate_adds_total 0

TYPE couchdb_couch_replicator_jobs_pending gauge
couchdb_couch_replicator_jobs_pending ®

TYPE couchdb_couch_replicator_jobs_removes_total counter
couchdb_couch_replicator_jobs_removes_total 0

TYPE couchdb_couch_replicator_jobs_running gauge
couchdb_couch_replicator_jobs_running 0

TYPE couchdb_couch_replicator_jobs_starts_total counter
couchdb_couch_replicator_jobs_starts_total 0

TYPE couchdb_couch_replicator_jobs_stops_total counter
couchdb_couch_replicator_jobs_stops_total 0

TYPE couchdb_couch_replicator_jobs_total gauge
couchdb_couch_replicator_jobs_total

TYPE couchdb_couch_replicator_requests_total counter
couchdb_couch_replicator_requests_total 0

TYPE couchdb_couch_replicator_responses_failure_total counter
couchdb_couch_replicator_responses_failure_total 0

TYPE couchdb_couch_replicator_responses_total counter
couchdb_couch_replicator_responses_total 0

TYPE couchdb_couch_replicator_stream_responses_failure_total counter
couchdb_couch_replicator_stream_responses_failure_total 0

TYPE couchdb_couch_replicator_stream_responses_total counter
couchdb_couch_replicator_stream_responses_total 0

TYPE couchdb_couch_replicator_worker_deaths_total counter
couchdb_couch_replicator_worker_deaths_total 0

TYPE couchdb_couch_replicator_workers_started_total counter
couchdb_couch_replicator_workers_started_total 0

TYPE couchdb_auth_cache_requests_total counter
couchdb_auth_cache_requests_total 0

TYPE couchdb_auth_cache_misses_total counter
couchdb_auth_cache_misses_total 0

TYPE couchdb_collect_results_time_seconds summary
couchdb_collect_results_time_seconds{quantile="0.5"} 0.0
couchdb_collect_results_time_seconds{quantile="0.75"} 0.0
couchdb_collect_results_time_seconds{quantile="0.9"} 0.0
couchdb_collect_results_time_seconds{quantile="0.95"} 0.0
couchdb_collect_results_time_seconds{quantile="0.99"} 0.0
couchdb_collect_results_time_seconds{quantile="0.999"} 0.0
couchdb_collect_results_time_seconds_sum 0.0
couchdb_collect_results_time_seconds_count 0

TYPE couchdb_couch_server_lru_skip_total counter
couchdb_couch_server_lru_skip_total 0

TYPE couchdb_database_purges_total counter
couchdb_database_purges_total 0

TYPE couchdb_database_reads_total counter
couchdb_database_reads_total 0

TYPE couchdb_database_writes_total counter
couchdb_database_writes_total 0

TYPE couchdb_db_open_time_seconds summary
couchdb_db_open_time_seconds{quantile="0.5"} 0.0
couchdb_db_open_time_seconds{quantile="0.75"} 0.0
couchdb_db_open_time_seconds{quantile="0.9"} 0.0

(continues on next page)

12.2. Server 325

Apache CouchDB®, Release 3.3.3

(continued from previous page)

couchdb_db_open_time_seconds{quantile="0.95"} 0.0
couchdb_db_open_time_seconds{quantile="0.99"} 0.0
couchdb_db_open_time_seconds{quantile="0.999"} 0.0
couchdb_db_open_time_seconds_sum 0.0
couchdb_db_open_time_seconds_count 0

TYPE couchdb_dbinfo_seconds summary
couchdb_dbinfo_seconds{quantile="0.5"} 0.0
couchdb_dbinfo_seconds{quantile="0.75"} 0.0
couchdb_dbinfo_seconds{quantile="0.9"} 0.0
couchdb_dbinfo_seconds{quantile="0.95"} 0.0
couchdb_dbinfo_seconds{quantile="0.99"} 0.0
couchdb_dbinfo_seconds{quantile="0.999"} 0.0
couchdb_dbinfo_seconds_sum 0.0
couchdb_dbinfo_seconds_count 0

TYPE couchdb_document_inserts_total counter
couchdb_document_inserts_total 0

TYPE couchdb_document_purges_failure_total counter
couchdb_document_purges_failure_total

TYPE couchdb_document_purges_success_total counter
couchdb_document_purges_success_total

TYPE couchdb_document_purges_total_total counter
couchdb_document_purges_total_total ®

TYPE couchdb_document_writes_total counter
couchdb_document_writes_total 0

TYPE couchdb_httpd_aborted_requests_total counter
couchdb_httpd_aborted_requests_total 0

TYPE couchdb_httpd_all_docs_timeouts_total counter
couchdb_httpd_all_docs_timeouts_total 0

TYPE couchdb_httpd_bulk_docs_seconds summary
couchdb_httpd_bulk_docs_seconds{quantile="0.5"} 0.0
couchdb_httpd_bulk_docs_seconds{quantile="0.75"} 0.0
couchdb_httpd_bulk_docs_seconds{quantile="0.9"} 0.0
couchdb_httpd_bulk_docs_seconds{quantile="0.95"} 0.0
couchdb_httpd_bulk_docs_seconds{quantile="0.99"} 0.0
couchdb_httpd_bulk_docs_seconds{quantile="0.999"} 0.0
couchdb_httpd_bulk_docs_seconds_sum 0.0
couchdb_httpd_bulk_docs_seconds_count 0

...remaining couchdb metrics from _stats and _system

If an additional port config option is specified, then a client can call this API using that port which does not require
authentication. This option is false (OFF) by default. When the option is true (ON), the default ports for a 3
node cluster are 17986, 27986, 37986. See Configuration of Prometheus Endpoint for details.

GET /_node/_local/_prometheus HTTP/1.1
Accept: text/plain
Host: localhost:17986

326

Chapter 12. API Reference

Apache CouchDB®, Release 3.3.3

12.2.14 /_node/{node-name}/_system

GET /_node/{node-name}/_system

The _systemresource returns a JSON object containing various system-level statistics for the running server.
The object is structured with top-level sections collating the statistics for a range of entries, with each indi-
vidual statistic being easily identified, and the content of each statistic is self-describing.

The literal string _local serves as an alias for the local node name, so for all stats URLs, {node-name}
may be replaced with _local, to interact with the local node’s statistics.

Request Headers
* Accept —
— application/json
- text/plain
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Status Codes
* 200 OK — Request completed successfully
Request:

GET /_node/_local/_system HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 187

Content-Type: application/json
Date: Sat, 10 Aug 2013 11:41:11 GMT
Server: CouchDB (Erlang/OTP)

{
"uptime": 259,
"memory": {}

}

These statistics are generally intended for CouchDB developers only.

12.2.15 /_node/{node-name}/_restart

POST /_node/{node-name}/_restart

This API is to facilitate integration testing only it is not meant to be used in production
Status Codes

* 200 OK — Request completed successfully

12.2. Server 327

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Apache CouchDB®, Release 3.3.3

12.2.16 /_node/{node-name}/_versions

GET /_node/{node-name}/_versions

The _versions resource returns a JSON object containing various system-level informations for the running
Sserver.

The literal string _local serves as an alias for the local node name, so for all stats URLs, {node-name}
may be replaced with _local, to interact with the local node’s informations.

Request Headers
* Accept —
— application/json
- text/plain
Response Headers
* Content-Type —
— application/json
Status Codes
* 200 OK — Request completed successfully
Request:

GET /_node/_local/_versions HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 368

Content-Type: application/json

Date: Sat, 03 Sep 2022 08:12:12 GMT

Server: CouchDB/3.2.2-ea382cf (Erlang OTP/25)

{
"javascript_engine": {
"version": "91",
"name": "spidermonkey"
3,
"erlang": {
"version": "25.0.4",
"supported_hashes": [
"sha",
"sha224",
"sha256",
]
1,
"collation_driver": {
"name": "libicu",
"library_version": "70.1",
"collator_version": "153.112",
"collation_algorithm_version": "14"

328 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Apache CouchDB®, Release 3.3.3

12.2.17 /_search_analyze

Warning: Search endpoints require a running search plugin connected to each cluster node. See Search Plugin
Installation for details.

New in version 3.0.

POST /_search_analyze

Tests the results of Lucene analyzer tokenization on sample text.
Parameters
» field - Type of analyzer
* text — Analyzer token you want to test
Status Codes
* 200 OK — Request completed successfully

* 400 Bad Request — Request body is wrong (malformed or missing one of the mandatory
fields)

¢ 500 Internal Server Error — A server error (or other kind of error) occurred

Request:

POST /_search_analyze HTTP/1.1
Host: localhost:5984
Content-Type: application/json

{"analyzer":"english", "text":"running"}

Response:

{

"tokens": [

run

12.2.18 /_utils

GET /_utils

Accesses the built-in Fauxton administration interface for CouchDB.
Response Headers
* Location — New URI location
Status Codes
* 301 Moved Permanently — Redirects to GET /_utils/
GET /_utils/

Response Headers
* Content-Type — text/html

* Last-Modified — Static files modification timestamp

Status Codes

12.2. Server 329

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://tools.ietf.org/html/rfc7231#section-7.1.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7232#section-2.2

Apache CouchDB®, Release 3.3.3

* 200 OK — Request completed successfully

12.2.19 /_up

New in version 2.0.

GET /_up

Confirms that the server is up, running, and ready to respond to requests. If maintenance_mode is true or
nolb, the endpoint will return a 404 response.

Response Headers
* Content-Type — application/json
Status Codes
* 200 OK — Request completed successfully
* 404 Not Found — The server is unavailable for requests at this time.

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate

Content-Length: 16

Content-Type: application/json

Date: Sat, 17 Mar 2018 04:46:26 GMT

Server: CouchDB/2.2.0-£f999071ec (Erlang OTP/19)
X-Couch-Request-ID: c57a3b2787
X-CouchDB-Body-Time: @

{"status":"ok"}

12.2.20 /_uuids

Changed in version 2.0.0.
GET /_uuids

Requests one or more Universally Unique Identifiers (UUIDs) from the CouchDB instance. The response is
a JSON object providing a list of UUIDs.

Request Headers
* Accept —
— application/json
— text/plain
Query Parameters
e count (number) — Number of UUIDs to return. Default is 1.
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
* ETag — Response hash
Status Codes

* 200 OK — Request completed successfully

330 Chapter 12. API Reference

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7232#section-2.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Apache CouchDB®, Release 3.3.3

* 400 Bad Request — Requested more UUIDs than is allowed to retrieve

Request:

GET /_uuids?count=10 HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Content-Length: 362

Content-Type: application/json

Date: Sat, 10 Aug 2013 11:46:25 GMT
ETag: "DGRWWQFLUDWNS5MRKSLKQ425XV"
Expires: Fri, 01 Jan 1990 00:00:00 GMT
Pragma: no-cache

Server: CouchDB (Erlang/OTP)

{
"uuids": [
"75480ca477454894678e22eec6002413",
"75480ca477454894678e22eec600250b",
"75480cad77454894678e22eec6002c41",
"75480cad477454894678e22eec6003b90",
"75480ca477454894678e22eec6003fca",
"75480ca477454894678e22eec6004bef",
"75480ca477454894678e22eec600528f",
"75480cad77454894678e22eec6005e0b",
"75480cad77454894678e22eec6006158",
"75480ca477454894678e22eec6006161"

The UUID type is determined by the UUID algorithm setting in the CouchDB configuration.

The UUID type may be changed at any time through the Configuration API. For example, the UUID type could be

changed to random by sending this HTTP request:

PUT http://couchdb:5984/_node/nonode@nohost/_config/uuids/algorithm HTTP/1.1

Content-Type: application/json
Accept: */*

"random"

You can verify the change by obtaining a list of UUIDs:

{
"uuids" : [
"031aad7b469956c£2826fch2a9260492",
"6ec875e15e6b385120938df18ee8e496",
"cff9e881516483911aa2f0e98949092d",
"b89d37509d39dd712546£9510d4a9271",
"2e0dbf7£f6c4ad716£21938a016e4e59f"

12.2. Server

331

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Apache CouchDB®, Release 3.3.3

12.2.21 /favicon.ico

GET /favicon.ico

Binary content for the favicon.ico site icon.

Response Headers

Content-Type — image/x-1icon

Status Codes

200 OK - Request completed successfully

404 Not Found — The requested content could not be found

12.2.22 /_reshard

New in version 2.4.

GET /_reshard
Returns a count of completed, failed, running, stopped, and total jobs along with the state of resharding on

the cluster.

Request Headers

Accept —

— application/json

Response Headers

Content-Type —

— application/json

Response JSON Object

state (string) — stopped or running

state_reason (string) — null or string describing additional information or reason

associated with the state

completed (number) — Count of completed resharding jobs
failed (number) — Count of failed resharding jobs
running (number) — Count of running resharding jobs
stopped (number) — Count of stopped resharding jobs

total (number) — Total count of resharding jobs

Status Codes

Request:

200 OK — Request completed successfully

401 Unauthorized — CouchDB Server Administrator privileges required

GET /_reshard HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

332

Chapter 12.

API Reference

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

HTTP/1.1 200 OK

Content-Type: application/json

{
"completed": 21,
"failed": 0,
"running": 3,
"state": "running",
"state_reason": null,
"stopped": 0,
"total": 24

}

GET /_reshard/state

Returns the resharding state and optional information about the state.
Request Headers
* Accept —
— application/json
Response Headers
* Content-Type —
— application/json
Response JSON Object
e state (string) - stopped or running
e state_reason (string) — Additional information or reason associated with the state
Status Codes
* 200 OK — Request completed successfully
* 401 Unauthorized — CouchDB Server Administrator privileges required

Request:

GET /_reshard/state HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"reason": null,
"state": "running"

PUT /_reshard/state

Change the resharding state on the cluster. The states are stopped or running. This starts and stops global
resharding on all the nodes of the cluster. If there are any running jobs, they will be stopped when the state
changes to stopped. When the state changes back to running those job will continue running.

Request Headers
* Accept —

12.2. Server 333

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://tools.ietf.org/html/rfc7231#section-5.3.2

Apache CouchDB®, Release 3.3.3

— application/json
Response Headers
* Content-Type —
— application/json
Request JSON Object
e state (string)— stopped or running

* state_reason (string)— Optional string describing additional information or reason
associated with the state

Response JSON Object
* ok (boolean) — true
Status Codes
* 200 OK — Request completed successfully
* 400 Bad Request — Invalid request. Could be a bad or missing state name.
* 401 Unauthorized — CouchDB Server Administrator privileges required

Request:

PUT /_reshard/state HTTP/1.1
Accept: application/json
Host: localhost:5984

{

"state": "stopped",

"reason": "Rebalancing in progress"
}
Response:

HTTP/1.1 200 OK
Content-Type: application/json

{

"ok": true

3

GET /_reshard/jobs

Note: The shape of the response and the total_rows and offset field in particular are meant to be
consistent with the _scheduler/jobs endpoint.

Request Headers
* Accept —
— application/json
Response Headers
* Content-Type —
— application/json

Response JSON Object

334 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

Apache CouchDB®, Release 3.3.3

» jobs (1ist)— Array of json objects, one for each resharding job. For the fields of each
job see the /_reshard/job/{jobid} endpoint.

» offset (number) — Offset in the list of jobs object. Currently hard-coded at 0.

* total_rows (number) — Total number of resharding jobs on the cluster.

Status Codes
* 200 OK — Request completed successfully

* 401 Unauthorized — CouchDB Server Administrator privileges required

Request:

GET /_reshard/jobs HTTP/1.1
Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"jobs": [
{
"history": [
{
"detail": null,
"timestamp": "2019-03-28T15:28:02Z",
"type": "new"
1,
{
"detail": "initial_copy",
"timestamp": "2019-03-28T15:28:02Z",
"type": "running"
}
1,
"id": "001-

—171d1211418996£ff47bd610b1d1257fc4ca2628868def4a05e63e8f8fe50694a",
"job_state": "completed",
"node": '"nodel@127.0.0.1",
"source": "shards/00000000-1fffffff/d1.1553786862",
"split_state": "completed",
"start_time": "2019-03-28T15:28:02Z",
"state_info": {},
"target": [
"shards/00000000-0fffffff/d1.1553786862",
"shards/10000000-1fffffff/d1.1553786862"
1,
"type": "split",
"update_time": "2019-03-28T15:28:08Z"
}
1,
"offset": 0,
"total_rows": 24
}

GET /_reshard/jobs/{jobid}
Get information about the resharding job identified by jobid.

12.2. Server 335

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

Request Headers
* Accept —
— application/json
Response Headers
e Content-Type —
— application/json
Response JSON Object
e id (string) —Job ID.
* type (string) — Currently only split is implemented.

* job_state (string) — The running state of the job. Could be one of new, running,
stopped, completed or failed.

» split_state (string) — State detail specific to shard splitting. It indicates
how far has shard splitting progressed, and can be one of new, initial_copy,
topoffl, build_indices, topoff2, copy_local_docs, update_shardmap,
wait_source_close, topoff3, source_delete or completed.

» state_info (object) — Optional additional info associated with the current state.

* source (string)— For split jobs this will be the source shard.

* target (1ist)— For split jobs this will be a list of two or more target shards.

* history (1ist) — List of json objects recording a job’s state transition history.
Status Codes

* 200 OK — Request completed successfully

* 401 Unauthorized — CouchDB Server Administrator privileges required

Request:

GET /_reshard/jobs/001-
—171d1211418996££f47bd610b1d1257fc4ca2628868def4a05e63e8£8fe50694a HTTP/1.1
Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{

"id": "001-171d1211418996ff47bd610b1d1257fc4ca2628868def4a05e63e8f8fe50694a",

"job_state": "completed",

"node": "nodel@127.0.0.1",

"source": "shards/00000000-1fffffff/d1.1553786862",

"split_state": "completed",

"start_time": "2019-03-28T15:28:02Z",

"state_info": {},

"target": [
"shards/00000000-0fffffff/d1.1553786862",
"shards/10000000-1fffffff/d1.1553786862"

1,

"type": "split",

"update_time": "2019-03-28T15:28:08Z",

"history": [

(continues on next page)

336 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

(continued from previous page)

{
"detail": null,
"timestamp": "2019-03-28T15:28:02Z",
"type": "new"

1,

{
"detail": "initial_copy",
"timestamp": "2019-03-28T15:28:02Z",
"type": "running"

}

]
}

POST /_reshard/jobs

Depending on what fields are specified in the request, one or more resharding jobs will be created. The
response is a json array of results. Each result object represents a single resharding job for a particular node
and range. Some of the responses could be successful and some could fail. Successful results will have the

"ok": true key and and value, and failed jobs will have the "error": "{error_message}" key and
value.
Request Headers
* Accept —
— application/json

Response Headers
* Content-Type —
— application/json
Request JSON Object
* type (string) — Type of job. Currently only "split" is accepted.
* db (string) — Database to split. This is mutually exclusive with the "shard” field.

* node (string) — Split shards on a particular node. This is an optional parameter. The
value should be one of the nodes returned from the _membership endpoint.

» range (string) — Split shards copies in the given range. The range format is
hhhhhhhh-hhhhhhhh where h is a hexadecimal digit. This format is used since this
is how the ranges are represented in the file system. This is parameter is optional and is
mutually exclusive with the "shard" field.

* shard (string) — Split a particular shard. The shard should be specified as "shards/
{range}/{db}. {suffix}". Where range has the hhhhhhhh-hhhhhhhh format, db
is the database name, and suffix is the shard (timestamp) creation suffix.

* error (string) — Error message if a job could be not be created.
* node — Cluster node where the job was created and is running.
Response JSON Object
* ok (boolean) - true if job created successfully.
Status Codes
* 201 Created — One or more jobs were successfully created
* 400 Bad Request — Invalid request. Parameter validation might have failed.
* 401 Unauthorized — CouchDB Server Administrator privileges required

* 404 Not Found — Db, node, range or shard was not found

12.2. Server 337

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Apache CouchDB®, Release 3.3.3

Request:

POST /_reshard/jobs HTTP/1.1
Accept: application/json
Content-Type: application/json

{
"db": "db3",
"range": "80000000-ffffffff",
"type": "split"

3

Response:

HTTP/1.1 201 Created
Content-Type: application/json

[
{
"id": "001-
—»30d7848a6feeb826d5e3ea5bb7773d672af226£d34fd84a8fb1ca736285df557",
"node": "nodel@127.0.0.1",
"ok": true,
"shard": "shards/80000000-ffffffff/db3.1554148353"
3,
{
"id": "001-
—c2d734360b4cb3ff8b3feacch2d787b£f81ce2e773489eddd985ddd®1d9de8e01",
"node": "node2@127.0.0.1",
"ok": true,
"shard": "shards/80000000-ffffffff/db3.1554148353"

]

DELETE /_reshard/jobs/{jobid}
If the job is running, stop the job and then remove it.

Response JSON Object
» ok (boolean) — true if the job was removed successfully.
Status Codes
* 200 OK — The job was removed successfully
* 401 Unauthorized — CouchDB Server Administrator privileges required
* 404 Not Found — The job was not found

Request:

DELETE /_reshard/jobs/001-
—171d1211418996££f47bd610b1d1257fc4ca2628868def4a05e63e8£8fe50694a HTTP/1.1

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{

"ok": true

}

338 Chapter 12. API Reference

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Apache CouchDB®, Release 3.3.3

GET /_reshard/jobs/{jobid}/state
Returns the running state of a resharding job identified by jobid.

Request Headers
* Accept —
— application/json
Response Headers
* Content-Type —
— application/json
Request JSON Object
e state (string)— One of new, running, stopped, completed or failed.
* state_reason (string) — Additional information associated with the state
Status Codes
* 200 OK — Request completed successfully
* 401 Unauthorized — CouchDB Server Administrator privileges required
* 404 Not Found — The job was not found
Request:

GET /_reshard/jobs/001-
—b3da®04f969bbd682faaab5a6¢c373705cbcca23£732¢c386bb1a608cfbcfe9faff/state HTTP/1.1
Accept: application/json

Host: localhost:5984

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"reason": null,
"state": "running"

}

PUT /_reshard/jobs/{jobid}/state

Change the state of a particular resharding job identified by jobid. The state can be changed from stopped
to running or from running to stopped. If an individual job is stopped via this API it will stay stopped
even after the global resharding state is toggled from stopped to running. If the job is already completed
its state will stay completed.

Request Headers
* Accept —
— application/json
Response Headers
* Content-Type —
— application/json
Request JSON Object
e state (string) - stopped or running

* state_reason (string) — Optional string describing additional information or reason
associated with the state

12.2. Server 339

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

Apache CouchDB®, Release 3.3.3

Response JSON Object
* ok (boolean) — true

Status Codes

* 200 OK — Request completed successfully

* 400 Bad Request — Invalid request. Could be a bad state name, for example.

* 401 Unauthorized — CouchDB Server Administrator privileges required

* 404 Not Found — The job was not found

Request:

PUT /_reshard/state/001-

Accept: application/json
Host: localhost:5984

—b3da®04£969bbd682faaab5a6¢c373705cbcca23£732¢c386bb1a608cfbcfe9faff/state HTTP/1.1

{

"state": "stopped",

"reason": "Rebalancing in progress"
}
Response:

HTTP/1.1 200 OK
Content-Type: application/json

{

"ok": true

}

12.2.23 Authentication

Interfaces for obtaining session and authorization data.

Note: We also strongly recommend you ser up SSL to improve all authentication methods’ security.

Basic Authentication

Basic authentication (RFC 2617) is a quick and simple way to authenticate with CouchDB. The main drawback is
the need to send user credentials with each request which may be insecure and could hurt operation performance

(since CouchDB must compute the password hash with every request):

Request:

GET / HTTP/1.1

Accept: application/json
Authorization: Basic cm9vdDpyZWxheA==
Host: localhost:5984

Response:

HTTP/1.1 200 OK
Cache-Control: must-revalidate
Content-Length: 177

(continues on next page)

340

Chapter 12. API Reference

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://en.wikipedia.org/wiki/Basic_access_authentication
https://datatracker.ietf.org/doc/html/rfc2617.html

Apache CouchDB®, Release 3.3.3

(continued from previous page)

Content-Type: application/json
Date: Mon, 03 Dec 2012 00:44:47 GMT
Server: CouchDB (Erlang/OTP)

{
"couchdb" : "Welcome",
"uuid":"0a959b9b8227188afc2ac26ccdf345a6",
"version":"1.3.0",
"vendor": {
"version":"1.3.0",
"name":"The Apache Software Foundation"
}
}

Cookie Authentication

For cookie authentication (RFC 2109) CouchDB generates a token that the client can use for the next few requests
to CouchDB. Tokens are valid until a timeout. When CouchDB sees a valid token in a subsequent request, it will
authenticate the user by this token without requesting the password again. By default, cookies are valid for 10
minutes, but it’s adjustable via timeout. Also it’s possible to make cookies persistent.

To obtain the first token and thus authenticate a user for the first time, the username and password must be sent

to the _session API.

/_session

POST /_session

Initiates new session for specified user credentials by providing Cookie value.

Request Headers
* Content-Type —

— application/x-www-form-urlencoded

— application/json

Query Parameters

* next (string) — Enforces redirect after successful login to the specified location. This

location is relative from server root. Optional.

Form Parameters

* name — User name

e password — Password
Response Headers

» Set-Cookie — Authorization token
Response JSON Object

* ok (boolean) — Operation status

* name (string) — Username

e roles (array) — List of user roles
Status Codes

* 200 OK — Successfully authenticated

12.2. Server

341

https://datatracker.ietf.org/doc/html/rfc2109.html
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc2109#section-4.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Apache CouchDB®, Release 3.3.3

* 302 Found — Redirect after successful authentication
* 401 Unauthorized — Username or password wasn’t recognized

Request:

POST /_session HTTP/1.1

Accept: application/json

Content-Length: 24

Content-Type: application/x-www-form-urlencoded
Host: localhost:5984

name=root&password=relax

It’s also possible to send data as JSON:

POST /_session HTTP/1.1
Accept: application/json
Content-Length: 37
Content-Type: application/json
Host: localhost:5984

{
"name": "root",
"password": "relax"
}
Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate

Content-Length: 43

Content-Type: application/json

Date: Mon, 03 Dec 2012 01:23:14 GMT

Server: CouchDB (Erlang/OTP)

Set-Cookie: AuthSession=cm9vdDolMEJCRkYwMjgOLOOY10IwShrgt8y-UkhI-c6BGw;..
—Version=1; Path=/; HttpOnly

{"ok":true,"name":"root","roles":["_admin"]}

If next query parameter was provided the response will trigger redirection to the specified location in case
of successful authentication:

Request:

POST /_session?next=/blog/_design/sofa/_rewrite/recent-posts HITP/1.1
Accept: application/json

Content-Type: application/x-www-form-urlencoded

Host: localhost:5984

name-=root&password=relax

Response:

HTTP/1.1 302 Moved Temporarily

Cache-Control: must-revalidate

Content-Length: 43

Content-Type: application/json

Date: Mon, 03 Dec 2012 01:32:46 GMT

Location: http://localhost:5984/blog/_design/sofa/_rewrite/recent-posts

(continues on next page)

342

Chapter 12. API Reference

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

(continued from previous page)

Server: CouchDB (Erlang/O0TP)
Set-Cookie: AuthSession=cm9vdDolMEIDMDEzRTp7Vu5GKCkTxTVxwXbpXsBARQWnhQ;..
—Version=1; Path=/; HttpOnly

{"ok":true, "name" :null, "roles":["_admin"]}

GET /_session

Returns information about the authenticated user, including a User Context Object, the authentication method
and database that were used, and a list of configured authentication handlers on the server.

Query Parameters

* basic (boolean) — Accept Basic Auth by requesting this resource. Optional.
Response JSON Object

* ok (boolean) — Operation status

* userCtx (object) — User context for the current user

 info (object) — Server authentication configuration
Status Codes

* 200 OK — Successfully authenticated.

* 401 Unauthorized — Username or password wasn’t recognized.

Request:

GET /_session HTTP/1.1

Host: localhost:5984

Accept: application/json

Cookie: AuthSession=cm9vdDolMEJIDMDQxRDpgb-Ta9QfP9hpdP jHLXNTKg_Hf9w

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate

Content-Length: 175

Content-Type: application/json

Date: Fri, 09 Aug 2013 20:27:45 GMT

Server: CouchDB (Erlang/O0TP)

Set-Cookie: AuthSession=cm9vdDolMjAINTBDMTgmX2qKt1KDR--GUC80DQ6-Ew_XIw;..
—Version=1; Path=/; HttpOnly

{
"info": {
"authenticated": '"cookie",
"authentication_db": "_users",
"authentication_handlers": [
"cookie",
"default"
]
3,
"ok": true,
"userCtx": {
"name": "root",
"roles": [
"_admin"

(continues on next page)

12.2.

Server 343

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

(continued from previous page)

DELETE /_session

Closes user’s session by instructing the browser to clear the cookie. This does not invalidate the session from
the server’s perspective, as there is no way to do this because CouchDB cookies are stateless. This means
calling this endpoint is purely optional from a client perspective, and it does not protect against theft of a
session cookie.

Status Codes
* 200 OK — Successfully close session.

Request:

DELETE /_session HTTP/1.1

Accept: application/json

Cookie: AuthSession=cm9vdDolMjA1INEVGMDo1QXNQkqgC_0Qmgrk8Fw61_AzDeXw
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate

Content-Length: 12

Content-Type: application/json

Date: Fri, 09 Aug 2013 20:30:12 GMT

Server: CouchDB (Erlang/OTP)

Set-Cookie: AuthSession=; Version=1; Path=/; HttpOnly

{

"ok": true

Proxy Authentication

Note: To use this authentication method make sure that the {chttpd_auth,
proxy_authentication_handler} value is added to the list of the active chttpd/
authentication_handlers:

[chttpd]
authentication_handlers = {chttpd_auth, cookie_authentication_handler}, {chttpd_auth,.
wproxy_authentication_handler}, {chttpd_auth, default_authentication_handler}

Proxy authentication is very useful in case your application already uses some external authentication service and
you don’t want to duplicate users and their roles in CouchDB.

This authentication method allows creation of a User Context Object for remotely authenticated user. By default,
the client just needs to pass specific headers to CouchDB with related requests:

e X-Auth-CouchDB-UserName: username
e X-Auth-CouchDB-Roles: comma-separated (,) list of user roles

e X-Auth-CouchDB-Token: authentication token. When proxy_use_secret is set (which is strongly
recommended!), this header provides an HMAC of the username to authenticate and the secret token to
prevent requests from untrusted sources. (Use one of the configured hash algorithms in chttpd_auth/
hash_algorithms and sign the username with the secret)

344 Chapter 12. API Reference

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Apache CouchDB®, Release 3.3.3

Creating the token (example with openssl):

echo -n "foo" | openssl dgst -sha256 -hmac "the_secret"
(stdin)= 3f0786e96b20b0102b77f1a49c041be6977cfb3bf78c41al2adc121cd9b4e68a

Request:

GET /_session HTTP/1.1

Host: localhost:5984

Accept: application/json

Content-Type: application/json; charset=utf-8

X-Auth-CouchDB-Roles: users,blogger

X-Auth-CouchDB-UserName: foo

X-Auth-CouchDB-Token: 3f0786e96b20b0102b77£f1a49c041be6977cfb3bf78c41al2adc121cd9b4e68a

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 190

Content-Type: application/json
Date: Fri, 14 Jun 2013 10:16:03 GMT
Server: CouchDB (Erlang/OTP)

{
"info": {
"authenticated": "proxy",
"authentication_db": "_users",
"authentication_handlers": [
"cookie",
"proxy",
"default"
]
3,
"ok": true,
"userCtx": {

name": "foo",
"roles": [
"users",
"blogger"

Note that you don’t need to request a session to be authenticated by this method if all required HTTP headers are
provided.

JWT Authentication

Note: To use this authentication method, make sure that the {chttpd_auth, jwt_authentication_handler}
value is added to the list of the active chttpd/authentication_handlers

[chttpd]
authentication_handlers = {chttpd_auth, cookie_authentication_handler}, {chttpd_auth,.
—jwt_authentication_handler}, {chttpd_auth, default_authentication_handler}

12.2. Server 345

Apache CouchDB®, Release 3.3.3

JWT authentication enables CouchDB to use externally-generated JWT tokens instead of defining users or
roles in the _users database.

The JWT authentication handler requires that all JWT tokens are signed by a key that CouchDB has been configured
to trust (there is no support for JWT’s “NONE” algorithm).

Additionally, CouchDB can be configured to reject JWT tokens that are missing a configurable set of claims (e.g,
a CouchDB administrator could insist on the exp claim).

Only claims listed in required checks are validated. Additional claims will be ignored.
Two sections of config exist to configure JWT authentication;

The required_claims config setting is a comma-separated list of additional mandatory JWT claims that must
be present in any presented JWT token. A 400 Bad Request is sent if any are missing.

The alg claim is mandatory as it used to lookup the correct key for verifying the signature.
The sub claim is mandatory and is used as the CouchDB user’s name if the JWT token is valid.

You can set the user roles claim name through the config setting roles_claim_name. If you don’t set an explicit
value, then _couchdb.roles will be set as the default claim name. If presented, as a JSON array of strings, it is
used as the CouchDB user’s roles list as long as the JWT token is valid.

Warning: roles_claim_name is deprecated in CouchDB 3.3, and will be removed later. Please use
roles_claim_path.

; [jwt_keys]

; Configure at least one key here if using the JWT auth handler.

; If your JWT tokens do not include a "kid" attribute, use "_default"

; as the config key, otherwise use the kid as the config key.

; Examples

; hmac:_default = aGVsbG8=

; hmac:foo = aGVsbG8=

; The config values can represent symmetric and asymmetric keys.

; For symmetric keys, the value is base64 encoded;

; hmac:_default = aGVsbG8= # base64-encoded form of "hello"

; For asymmetric keys, the value is the PEM encoding of the public

; key with newlines replaced with the escape sequence \n.

; rsa:foo = ----—- BEGIN PUBLIC KEY----- \nMIIBIjAN...IDAQAB\n----- END PUBLIC KEY----- \n
; ec:bar = ----- BEGIN PUBLIC KEY----- \nMHYwWEAYHK. . .AzztRs\n----- END PUBLIC KEY----- \n

The jwt_keys section lists all the keys that this CouchDB server trusts. You should ensure that all nodes of your
cluster have the same list.

Since version 3.3 it’s possible to use = in parameter names, but only when the parameter and value are separated
=, i.e. the equal sign is surrounded by at least one space on each side. This might be useful in the [jwt_keys]
section where base64 encoded keys may contain the = character.

JWT tokens that do not include a kid claim will be validated against the $alg:_default key.

It is mandatory to specify the algorithm associated with every key for security reasons (notably present-
ing a HMAC-signed token using an RSA or EC public key that the server trusts: https://authO.com/blog/
critical-vulnerabilities-in-json-web-token-libraries/).

Request:

GET /_session HTTP/1.1

Host: localhost:5984

Accept: application/json

Content-Type: application/json; charset=utf-8
Authorization: Bearer <JWT token>

346 Chapter 12. API Reference

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/

Apache CouchDB®, Release 3.3.3

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 188

Content-Type: application/json
Date: Sun, 19 Apr 2020 08:29:15 GMT
Server: CouchDB (Erlang/OTP)

{
"info": {
"authenticated": "jwt",
"authentication_db": "_users",
"authentication_handlers": [
"cookie",
"proxy",
"default"
]
3,
"ok": true,
"userCtx": {
"name": "foo",
"roles": [
"users",

"blogger"

Note that you don’t need to request session to be authenticated by this method if the required HTTP header is
provided.

12.2.24 Configuration

The CouchDB Server Configuration API provide an interface to query and update the various configuration values
within a running CouchDB instance.

Accessing the local node’s configuration

The literal string _local serves as an alias for the local node name, so for all configuration URLs, {node-name}
may be replaced with _local, to interact with the local node’s configuration.

/_node/{node-name}/_config

GET /_node/{node-name}/_config

Returns the entire CouchDB server configuration as a JSON structure. The structure is organized by different
configuration sections, with individual values.

Request Headers
* Accept —
— application/json
— text/plain
Response Headers

* Content-Type —

12.2. Server 347

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

Apache CouchDB®, Release 3.3.3

— application/json
— text/plain; charset=utf-8
Status Codes
* 200 OK — Request completed successfully

* 401 Unauthorized — CouchDB Server Administrator privileges required

Request

GET /_node/nonode@nohost/_config HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 4148

Content-Type: application/json
Date: Sat, 10 Aug 2013 12:01:42 GMT
Server: CouchDB (Erlang/OTP)

{
"attachments": {

"compressible_types": "text/*, application/javascript, application/json,.
— application/xml",

"compression_level": "8"

3,

"couchdb": {
"users_db_suffix": "_users",
"database_dir": "/var/lib/couchdb",
"max_attachment_chunk_size": "4294967296",
"max_dbs_open": "100",
"os_process_timeout": "5000",
"uri_file": "/var/lib/couchdb/couch.uri",
"util_driver_dir": "/usr/lib64/couchdb/erlang/lib/couch-1.5.0/priv/1ib",
"view_index_dir": "/var/lib/couchdb"

3,

"chttpd": {
"allow_jsonp": "false",
"backlog": "512",
"bind_address": "0.0.0.0",
"port": "5984",
"require_valid_user": "false",
"socket_options": "[{sndbuf, 262144}, {nodelay, true}]",
"server_options": "[{recbuf, undefined}]",
"secure_rewrites": "true"

}

"httpd": {
"authentication_handlers": "{couch_httpd_auth, cookie_authentication_

—handler}, {couch_httpd_auth, default_authentication_handler}",
"bind_address": "192.168.0.2",

"max_connections": "2048",
"port": "5984",

1,

"log": {
"writer": "file",

(continues on next page)

348

Chapter 12. API Reference

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"file": "/var/log/couchdb/couch.log",
"include_sasl": "true",
"level”: "info"

1,

"query_server_config": {
"reduce_limit": "true"

b

"replicator": {
"max_http_pipeline_size": "10",
"max_http_sessions": "10"

3,

"stats": {
"interval": "10"

1,

"uuids": {
"algorithm": "utc_random"

}

}

/_node/{node-name}/_config/{section}

GET /_node/{node-name}/_config/{section}

Gets the configuration structure for a single section.
Parameters
» section - Configuration section name
Request Headers
* Accept —
— application/json
— text/plain
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Status Codes

* 200 OK — Request completed successfully

* 401 Unauthorized — CouchDB Server Administrator privileges required

Request:

Accept: application/json
Host: localhost:5984

GET /_node/nonode@nohost/_config/httpd HTTP/1.1

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 444
Content-Type: application/json

(continues on next page)

12.2. Server

349

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

(continued from previous page)

Date: Sat, 10 Aug 2013 12:10:40 GMT
Server: CouchDB (Erlang/OTP)

{

"authentication_handlers": "{couch_httpd_auth, cookie_authentication_handler}
<, {couch_httpd_auth, default_authentication_handler}",

"bind_address": "127.0.0.1",

"default_handler": "{couch_httpd_db, handle_request}",

"port": "5984"

/_node/{node-name}/_config/{section}/{key}

GET /_node/{node-name}/_config/{section}/{key}

Gets a single configuration value from within a specific configuration section.
Parameters
» section - Configuration section name
* key — Configuration option name
Request Headers
* Accept —
— application/json
— text/plain
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Status Codes
* 200 OK — Request completed successfully
* 401 Unauthorized — CouchDB Server Administrator privileges required

Request:

GET /_node/nonode@nohost/_config/log/level HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 8

Content-Type: application/json
Date: Sat, 10 Aug 2013 12:12:59 GMT
Server: CouchDB (Erlang/OTP)

Hdebugll

350 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Apache CouchDB®, Release 3.3.3

Note: The returned value will be the JSON of the value, which may be a string or numeric value, or an
array or object. Some client environments may not parse simple strings or numeric values as valid JSON.

PUT /_node/{node-name}/_config/{section}/{key}

Updates a configuration value. The new value should be supplied in the request body in the corresponding
JSON format. If you are setting a string value, you must supply a valid JSON string. In response CouchDB
sends old value for target section key.

Parameters
» section - Configuration section name
* key — Configuration option name
Request Headers
* Accept —
— application/json
— text/plain
* Content-Type — application/json
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Status Codes
* 200 OK — Request completed successfully
* 400 Bad Request — Invalid JSON request body
* 401 Unauthorized — CouchDB Server Administrator privileges required
* 500 Internal Server Error — Error setting configuration

Request:

PUT /_node/nonode@nohost/_config/log/level HTTP/1.1
Accept: application/json

Content-Length: 7

Content-Type: application/json

Host: localhost:5984

uinfou

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 8

Content-Type: application/json
Date: Sat, 10 Aug 2013 12:12:59 GMT
Server: CouchDB (Erlang/O0TP)

lldebugn

DELETE /_node/{node-name}/_config/{section}/{key}

Deletes a configuration value. The returned JSON will be the value of the configuration parameter before it
was deleted.

12.2. Server 351

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Apache CouchDB®, Release 3.3.3

Parameters
» section - Configuration section name
* key — Configuration option name
Request Headers
e Accept —
— application/json
- text/plain
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Status Codes
* 200 OK — Request completed successfully
* 401 Unauthorized — CouchDB Server Administrator privileges required
* 404 Not Found — Specified configuration option not found

Request:

DELETE /_node/nonode@nohost/_config/log/level HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 7

Content-Type: application/json
Date: Sat, 10 Aug 2013 12:29:03 GMT
Server: CouchDB (Erlang/O0TP)

llinfon

/_node/{node-name}/_config/_reload

New in version 3.0.

POST /_node/{node-name}/_config/_reload

Reloads the configuration from disk. This has a side effect of flushing any in-memory configuration changes

that have not been committed to disk.

Request:

POST /_node/nonode@nohost/_config/_reload HTTP/1.1
Host: localhost:5984

Response:

HTTP/1.1 200 OK
Cache-Control: must-revalidate
Content-Length: 12

(continues on next page)

352 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Apache CouchDB®, Release 3.3.3

(continued from previous page)

Content-Type: application/json
Date: Tues, 21 Jan 2020 11:09:35
Server: CouchDB/3.0.0 (Erlang OTP)

{"ok":true}

12.3 Databases

The Database endpoint provides an interface to an entire database with in CouchDB. These are database-level,
rather than document-level requests.

For all these requests, the database name within the URL path should be the database name that you wish to perform
the operation on. For example, to obtain the meta information for the database recipes, you would use the HTTP
request:

GET /recipes

For clarity, the form below is used in the URL paths:

GET /db

Where db is the name of any database.

12.3.1 /db

HEAD /{db}

Returns the HTTP Headers containing a minimal amount of information about the specified database. Since
the response body is empty, using the HEAD method is a lightweight way to check if the database exists
already or not.

Parameters
* db — Database name
Status Codes
* 200 OK — Database exists
* 404 Not Found — Requested database not found

Request:

HEAD /test HTTP/1.1
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Mon, 12 Aug 2013 01:27:41 GMT
Server: CouchDB (Erlang/OTP)

GET /{db}
Gets information about the specified database.

Parameters

¢ db — Database name

12.3. Databases 353

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Apache CouchDB®, Release 3.3.3

Request Headers
* Accept —
— application/json
— text/plain
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Response JSON Object
* cluster.n (number) — Replicas. The number of copies of every document.
* cluster.q (number) — Shards. The number of range partitions.

e cluster.r (number) — Read quorum. The number of consistent copies of a document
that need to be read before a successful reply.

* cluster.w (number) — Write quorum. The number of copies of a document that need
to be written before a successful reply.

» compact_running (boolean) — Set to true if the database compaction routine is op-
erating on this database.

e db_name (string) — The name of the database.

» disk_format_version (number) - The version of the physical format used for the data
when it is stored on disk.

* doc_count (number) — A count of the documents in the specified database.
e doc_del_count (number) — Number of deleted documents
* instance_start_time (string)— Always "0". (Returned for legacy reasons.)

* purge_seq (string) — An opaque string that describes the purge state of the database.
Do not rely on this string for counting the number of purge operations.

* sizes.active (number) — The size of live data inside the database, in bytes.
» sizes.external (number) — The uncompressed size of database contents in bytes.

* sizes.file (number) — The size of the database file on disk in bytes. Views indexes
are not included in the calculation.

» update_seq (string) — An opaque string that describes the state of the database. Do
not rely on this string for counting the number of updates.

» props.partitioned (boolean) - (optional) If present and true, this indicates that the
database is partitioned.

Status Codes
* 200 OK — Request completed successfully
* 404 Not Found — Requested database not found

Request:

GET /receipts HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

354

Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Apache CouchDB®, Release 3.3.3

HTTP/1.1 200 OK
Cache-Control: must-revalidate
Content-Length: 258
Content-Type: application/json
Date: Mon, 12 Aug 2013 01:38:57 GMT
Server: CouchDB (Erlang/O0TP)
{
"cluster": {
"n": 3,
"q": 8,
"r'": 2,
"w': 2
1,
"compact_running": false,
"db_name": "receipts",
"disk_format_version": 6,
"doc_count": 6146,
"doc_del_count": 64637,
"instance_start_time": "0",
"props": {1,
"purge_seq": 0,
"sizes": {
"active": 65031503,
"external": 66982448,
"file": 137433211
3,
"update_seq": ""292786-gl1AAAAF..."
}
PUT /{db}

Creates a new database. The database name {db} must be composed by following next rules:
* Name must begin with a lowercase letter (a-z)
¢ Lowercase characters (a-z)
» Digits (0-9)
* Any of the characters _, $, (,), +, -, and /.

If you're familiar with Regular Expressions, the rules above could be written as A[a-z][a-z0-9_$(O+/

-1%8.
Parameters
* db — Database name
Query Parameters

* g (integer) — Shards, aka the number of range partitions. Default is 8, unless overrid-
den in the cluster config.

* n(integer)—Replicas. The number of copies of the database in the cluster. The default
is 3, unless overridden in the cluster config.

» partitioned (boolean)— Whether to create a partitioned database. Default is false.
Request Headers
* Accept —
— application/json

— text/plain

12.3. Databases 355

http://en.wikipedia.org/wiki/Regular_expression
https://tools.ietf.org/html/rfc7231#section-5.3.2

Apache CouchDB®, Release 3.3.3

Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
* Location — Database URI location
Response JSON Object
* ok (boolean) — Operation status. Available in case of success
* error (string) — Error type. Available if response code is 4xx
* reason (string) — Error description. Available if response code is 4xx
Status Codes
* 201 Created — Database created successfully (quorum is met)
* 202 Accepted — Accepted (at least by one node)
* 400 Bad Request — Invalid database name
* 401 Unauthorized — CouchDB Server Administrator privileges required
* 412 Precondition Failed — Database already exists

Request:

PUT /db HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 201 Created

Cache-Control: must-revalidate
Content-Length: 12

Content-Type: application/json
Date: Mon, 12 Aug 2013 08:01:45 GMT
Location: http://localhost:5984/db
Server: CouchDB (Erlang/OTP)

{

"ok": true

}

If we repeat the same request to CouchDB, it will response with 412 since the database already exists:

Request:

PUT /db HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 412 Precondition Failed
Cache-Control: must-revalidate
Content-Length: 95

Content-Type: application/json
Date: Mon, 12 Aug 2013 08:01:16 GMT
Server: CouchDB (Erlang/OTP)

(continues on next page)

356 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-7.1.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.13

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"error": "file_exists",
"reason": "The database could not be created, the file already exists."

If an invalid database name is supplied, CouchDB returns response with 400:

Request:

PUT /_db HTTP/1.1
Accept: application/json
Host: localhost:5984

Request:

HTTP/1.1 400 Bad Request
Cache-Control: must-revalidate
Content-Length: 194

Content-Type: application/json
Date: Mon, 12 Aug 2013 08:02:10 GMT
Server: CouchDB (Erlang/OTP)

{

"error": "illegal_database_name",

"reason": "Name: '_db'. Only lowercase characters (a-z), digits (0-9), and.
—any of the characters _, $, (,), +, -, and / are allowed. Must begin with a.
—~letter."

}

DELETE /{db}
Deletes the specified database, and all the documents and attachments contained within it.

Note: To avoid deleting a database, CouchDB will respond with the HTTP status code 400 when the request
URL includes a ?rev= parameter. This suggests that one wants to delete a document but forgot to add the
document id to the URL.

Parameters
* db - Database name
Request Headers
* Accept —
— application/json
— text/plain
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Response JSON Object
» ok (boolean) — Operation status

Status Codes

12.3. Databases 357

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

Apache CouchDB®, Release 3.3.3

200 OK — Database removed successfully (quorum is met and database is deleted by at
least one node)

* 202 Accepted — Accepted (deleted by at least one of the nodes, quorum is not met yet)
* 400 Bad Request — Invalid database name or forgotten document id by accident

* 401 Unauthorized — CouchDB Server Administrator privileges required

404 Not Found — Database doesn’t exist or invalid database name

Request:

DELETE /db HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Length: 12

Content-Type: application/json
Date: Mon, 12 Aug 2013 08:54:00 GMT
Server: CouchDB (Erlang/OTP)

{

"ok": true

}

POST /{db}

Creates a new document in the specified database, using the supplied JSON document structure.

If the JSON structure includes the _id field, then the document will be created with the specified document
ID.

If the _id field is not specified, a new unique ID will be generated, following whatever UUID algorithm is
configured for that server.

Parameters
e db — Database name
Request Headers
* Accept —
— application/json
- text/plain
* Content-Type — application/json
Query Parameters
e batch (string) — Stores document in batch mode Possible values: ok. Optional
Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
* Location — Document’s URI

Response JSON Object

358

Chapter 12. API Reference

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-7.1.2

Apache CouchDB®, Release 3.3.3

e id (string) — Document ID
* ok (boolean) — Operation status
e rev (string) — Revision info
Status Codes
* 201 Created — Document created and stored on disk
* 202 Accepted — Document data accepted, but not yet stored on disk
* 400 Bad Request — Invalid database name

* 401 Unauthorized — Write privileges required

404 Not Found — Database doesn’t exist

409 Conflict — A Conflicting Document with same ID already exists

Request:

POST /db HTTP/1.1

Accept: application/json
Content-Length: 81
Content-Type: application/json

{
"servings": 4,
"subtitle": "Delicious with fresh bread",
"title": "Fish Stew"

}

Response:

HTTP/1.1 201 Created

Cache-Control: must-revalidate

Content-Length: 95

Content-Type: application/json

Date: Tue, 13 Aug 2013 15:19:25 GMT

Location: http://localhost:5984/db/ab39fe®993049b84cfa8lacd6ebad®9d
Server: CouchDB (Erlang/OTP)

{
"id": "ab39fe0993049b84cfa8lacd6ebad®od"”,
"ok": true,
"rev": "1-9¢65296036141e575d32ba9c0®34dd3ee"
}

Specifying the Document ID

The document ID can be specified by including the _id field in the JSON of the submitted record. The following
request will create the same document with the ID FishStew.

Request:

POST /db HTTP/1.1

Accept: application/json
Content-Length: 98
Content-Type: application/json

{

(continues on next page)

12.3. Databases 359

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"_id": "FishStew",

"servings": 4,

"subtitle": "Delicious with fresh bread",
"title": "Fish Stew"

Response:

HTTP/1.1 201 Created

Cache-Control: must-revalidate
Content-Length: 71

Content-Type: application/json

Date: Tue, 13 Aug 2013 15:19:25 GMT

ETag: "1-9c65296036141e575d32ba9c034dd3ee"
Location: http://localhost:5984/db/FishStew
Server: CouchDB (Erlang/O0TP)

{

"id": "FishStew",

"ok": true,

"rev": "1-9¢c65296036141e575d32ba9c034dd3ee"
}

Batch Mode Writes

You can write documents to the database at a higher rate by using the batch option. This collects document writes
together in memory (on a per-user basis) before they are committed to disk. This increases the risk of the documents
not being stored in the event of a failure, since the documents are not written to disk immediately.

Batch mode is not suitable for critical data, but may be ideal for applications such as log data, when the risk of
some data loss due to a crash is acceptable.

To use batch mode, append the batch=ok query argument to the URL of a POST /{db}, PUT /{db}/{docid},
or DELETE /{db}/{docid} request. The CouchDB server will respond with an HTTP 202 Accepted response
code immediately.

Note: Creating or updating documents with batch mode doesn’t guarantee that all documents will be successfully
stored on disk. For example, individual documents may not be saved due to conflicts, rejection by validation
function or by other reasons, even if overall the batch was successfully submitted.

Request:

POST /db?batch=ok HTTP/1.1
Accept: application/json
Content-Length: 98
Content-Type: application/json

{
"_id": "FishStew",
"servings": 4,
"subtitle": "Delicious with fresh bread",
"title": "Fish Stew"
}
Response:

360 Chapter 12. API Reference

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3

Apache CouchDB®, Release 3.3.3

HTTP/1.1 202 Accepted

Cache-Control: must-revalidate
Content-Length: 28

Content-Type: application/json

Date: Tue, 13 Aug 2013 15:19:25 GMT
Location: http://localhost:5984/db/FishStew
Server: CouchDB (Erlang/OTP)

{
"id": "FishStew",
"ok": true

12.3.2 /{db}/_all_docs

GET /{db}/_all_docs

Executes the built-in _all_docs view, returning all of the documents in the database. With the exception of
the URL parameters (described below), this endpoint works identically to any other view. Refer to the view
endpoint documentation for a complete description of the available query parameters and the format of the
returned data.

Parameters
* db — Database name
Request Headers
* Content-Type — application/json
Response Headers
* Content-Type —
— application/json
Status Codes
* 200 OK — Request completed successfully
* 404 Not Found — Requested database not found
Request:

GET /db/_all_docs HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Sat, 10 Aug 2013 16:22:56 GMT
ETag: "1W2DJUZFZSZD9K78UFA3GZWB4"
Server: CouchDB (Erlang/OTP)
Transfer-Encoding: chunked

{
"offset": O,
"rows": [

{

(continues on next page)

12.3. Databases 361

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"id": "16e458537602f5ef2a710089dffd9453",
"key": "16e458537602f5e£f2a710089dffd9453",
"value": {

"rev": "1-967a00dff5e02add41819138abb3284d"

}
1
{
"id": "a4c51cdfa2069f3e905c431114001aff",
"key": "a4c51cdfa2069£3e905c431114001aff",
"value": {
"rev": "1-967a00dff5e02add41819138abb3284d"
}
1
{
"id": "a4c51cdfa2069f3e905c4311140034aa",
"key": "a4c51cdfa2069f3e905c4311140034aa",
"value": {
"rev": "5-6182c9c954200ab5e3c6bd5e76a1549f"
}
}’
{
"id": "a4c51cdfa2069f3e905c431114003597",
"key": "a4c51cdfa2069£3e905c431114003597",
"value": {
"rev": "2-7051cbe5c8faecd085a3fa619e6e6337"
}
3,
{
"id": "f4ca7773ddea715afebc4db4b15d4£f0b3",
"key": "f4ca7773ddea715afebc4b4b15d4£0b3",
"value": {
"rev": "2-7051cbe5c8faecd®85a3fa619e6e6337"
}
}

1,
"total_rows": 5

}

POST /{db}/_all_docs

POST _all_docs functionality supports identical parameters and behavior as specified in the GET /{db}/
_all_docs API but allows for the query string parameters to be supplied as keys in a JSON object in the
body of the POST request.

Request:

POST /db/_all_docs HTTP/1.1
Accept: application/json
Content-Length: 70
Content-Type: application/json
Host: localhost:5984

{

"keys" : [
"Zingylemontart",
"Yogurtraita"

]

}

362

Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-4.3.3

Apache CouchDB®, Release 3.3.3

Response:
{
"total_rows" : 2666,
"rows" : [
{
"value" : {
"rev" : "1-a3544d296del19e6£5b932ea77d886942"
3,
"id" : "Zingylemontart",
"key" : "Zingylemontart"
}
{
"value" : {
"rev" : "1-91635098bfe7d40197a1b98d7ee®85fc"
1,
"id" : "Yogurtraita",
"key" : "Yogurtraita"
}
1,
"offset" : 0
}

12.3.3 /{db}/_design_docs

New in version 2.2.

GET /{db}/_design_docs

Returns a JSON structure of all of the design documents in a given database. The information is returned
as a JSON structure containing meta information about the return structure, including a list of all design
documents and basic contents, consisting the ID, revision and key. The key is the design document’s _id.

Parameters
e db — Database name
Request Headers
* Accept —
— application/json
- text/plain
Query Parameters

» conflicts (boolean) — Includes conflicts information in response. Ignored if in-
clude_docs isn’t true. Default is false.

* descending (boolean) — Return the design documents in descending by key order.
Default is false.

* endkey (string) — Stop returning records when the specified key is reached. Optional.
* end_key (string) — Alias for endkey param.

* endkey_docid (string) — Stop returning records when the specified design document
ID is reached. Optional.

* end_key_doc_id (string) — Alias for endkey_docid param.

* include_docs (boolean) — Include the full content of the design documents in the
return. Default is false.

12.3. Databases 363

https://tools.ietf.org/html/rfc7231#section-5.3.2

Apache CouchDB®, Release 3.3.3

inclusive_end (boolean) — Specifies whether the specified end key should be in-
cluded in the result. Default is true.

key (string) — Return only design documents that match the specified key. Optional.
keys (string) — Return only design documents that match the specified keys. Optional.

limit (number) — Limit the number of the returned design documents to the specified
number. Optional.

skip (number) — Skip this number of records before starting to return the results. Default
is 0.

startkey (string) — Return records starting with the specified key. Optional.
start_key (string) — Alias for startkey param.

startkey_docid (string) — Return records starting with the specified design docu-
ment ID. Optional.

start_key_doc_id (string) — Alias for startkey_docid param.

update_seq (boolean) — Response includes an update_seq value indicating which
sequence id of the underlying database the view reflects. Default is false.

Response Headers

Content-Type —
— application/json
— text/plain; charset=utf-8

ETag — Response signature

Response JSON Object

offset (number) — Offset where the design document list started

rows (array)— Array of view row objects. By default the information returned contains
only the design document ID and revision.

total_rows (number) — Number of design documents in the database. Note that this
is not the number of rows returned in the actual query.

update_seq (number) — Current update sequence for the database

Status Codes

200 OK — Request completed successfully

404 Not Found — Requested database not found

Request:

GET /db/_design_docs HTTP/1.1
Accept: application/json
Host: localhost:5984

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Sat, 23 Dec 2017 16:22:56 GMT
ETag: "1W2DJUZFZSZD9K78UFA3GZWB4"
Server: CouchDB (Erlang/OTP)
Transfer-Encoding: chunked

(continues on next page)

364

Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7232#section-2.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Apache CouchDB®, Release 3.3.3

(continued from previous page)

{
"offset": 0,
"rows": [
{
"id": "_design/ddoc®1",
"key": "_design/ddoc®1",
"value": {
}
3,
{
"id": "_design/ddoc®2",
"key": "_design/ddoc®2",
"value": {
}
1
{
"id": "_design/ddoc®3",
"key": "_design/ddoc03",
"value": {
}
1
{
"id": "_design/ddoc64",
"key": "_design/ddoc64",
"value": {
}
3,
{
"id": "_design/ddoc®5",
"key": "_design/ddoc®5",
"value": {
"rev
}
}
1,
"total_rows": 5
}

rev": "1-7407569d54af5bc94c266e70cbf8a180"

rev": "1-d942f0ce016472a0f46518b213b5628e"

"rev": "1-721fead6e6c8d811a225d5a62d08dfde"

rev": "1-32c76b46cab61351c75a84fbcbceece2f"

": "1-af856babf9cf746b48ae999645£f9541e"

POST /{db}/_design_docs

POST _design_docs functionality supports identical parameters and behavior as specified in the GET /{db}/
_design_docs API but allows for the query string parameters to be supplied as keys in a JSON object in

the body of the POST request.
Request:

POST /db/_design_docs HTTP/1.1
Accept: application/json
Content-Length: 70
Content-Type: application/json
Host: localhost:5984

"keyS" . [

(continues on next page)

12.3. Databases

365

https://tools.ietf.org/html/rfc7231#section-4.3.3

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"_design/ddoc02",
"_design/ddoc05"
]
}
The returned JSON is the all documents structure, but with only the selected keys in the output:
{
"total_rows" : 5,
"rows" : [
{
"value" : {
"rev" : "1-d942f0ce01647aa0f46518b213b5628e"
3,
"id" : "_design/ddoc02",
"key" : "_design/ddoc02"
3,
{
"value" : {
"rev" : "1-af856babf9cf746b48ae999645f9541e"
3,
"id" : "_design/ddoc0®5",
"key" : "_design/ddoc@®5"
}
1,
"offset" : O
}

Sending multiple queries to a database

New in version 2.2.

POST /{db}/_all_docs/queries

Executes multiple specified built-in view queries of all documents in this database. This enables you to
request multiple queries in a single request, in place of multiple POST /{db}/_all_docs requests.

Parameters
* db - Database name
Request Headers
* Content-Type —
— application/json
* Accept —
— application/json
Request JSON Object

* queries — An array of query objects with fields for the parameters of each individual
view query to be executed. The field names and their meaning are the same as the query
parameters of a regular _all_docs request.

Response Headers
* Content-Type —
— application/json

— text/plain; charset=utf-8

366 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

Apache CouchDB®, Release 3.3.3

* ETag — Response signature
* Transfer-Encoding — chunked
Response JSON Object

» results (array) — An array of result objects - one for each query. Each result object
contains the same fields as the response to a regular _all_docs request.

Status Codes
* 200 OK — Request completed successfully

400 Bad Request — Invalid request

401 Unauthorized — Read permission required

404 Not Found — Specified database is missing

500 Internal Server Error — Query execution error

Request:

POST /db/_all_docs/queries HTTP/1.1
Content-Type: application/json
Accept: application/json

Host: localhost:5984

{
"queries": [
{
"keys": [
"meatballs",
"spaghetti"
1
}s
{
"limit": 3,
"skip": 2
}
1
}
Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Wed, 20 Dec 2017 11:17:07 GMT
ETag: "1H8RGBCK3ABY6ACDM7ZSC30QK"
Server: CouchDB (Erlang/OTP)
Transfer-Encoding: chunked

{
"results" : [
{
"rows": [

{
"id": "meatballs",
"key": "meatballs",
"value": 1

1,

{

(continues on next page)

12.3. Databases 367

https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7230#section-3.3.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"id": "spaghetti",
"key": "spaghetti",

"value": 1
}
1,
"total_rows": 3
3,
{
"offset" : 2,
"rows" : [
{
"id" : "Adukiandorangecasserole-microwave",
"key" : "Aduki and orange casserole - microwave",
"value" : [
null,
"Aduki and orange casserole - microwave"
]
1,
{
"id" : "Aioli-garlicmayonnaise",
"key" : "Aioli - garlic mayonnaise",
"value" : [
null,
"Aioli - garlic mayonnaise"
1
1,
{
"id" : "Alabamapeanutchicken",
"key" : "Alabama peanut chicken",
"value" : [
null,
"Alabama peanut chicken"
]
}
1,
"total_rows" : 2667
}

Note: The multiple queries are also supported in /db/_local_docs/queries and /db/_design_docs/queries (similar
to /db/_all_docs/queries).

12.3.4 /{db}/_bulk_get

POST /{db}/_bulk_get

This method can be called to query several documents in bulk. It is well suited for fetching a specific revision
of documents, as replicators do for example, or for getting revision history.

Parameters

* db — Database name
Request Headers

* Accept —

368 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2

Apache CouchDB®, Release 3.3.3

— application/json
— multipart/related
— multipart/mixed
* Content-Type — application/json
Query Parameters
* revs (boolean) — Give the revisions history
Request JSON Object
* docs (array) — List of document objects, with id, and optionally rev and atts_since
Response Headers
* Content-Type —
— application/json
Response JSON Object

» results (object) — an array of results for each requested document/rev pair. id key
lists the requested document ID, docs contains a single-item array of objects, each of
which has either an error key and value describing the error, or ok key and associated
value of the requested document, with the additional _revisions property that lists the
parent revisions if revs=true.

Status Codes
* 200 OK — Request completed successfully

400 Bad Request — The request provided invalid JSON data or invalid query parameter

401 Unauthorized — Read permission required

404 Not Found — Invalid database name

* 415 Unsupported Media Type — Bad Content-Type value

Request:
POST /db/_bulk_get HTTP/1.1
Accept: application/json
Content-Type:application/json
Host: localhost:5984
{
"docs": [
{
"id": "foo"
"rev": "4-753875d51501a6b1883a9d62b4d33£91",
1,
{
"id": "foo"
"rev": "1-4a7e4ae49c4366eaed8edeaeca8f784ad",
1,
{
"id": "bar",
}
{
"id": "baz",
}
]
}

12.3. Databases 369

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

Apache CouchDB®, Release 3.3.3

Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Mon, 19 Mar 2018 15:27:34 GMT
Server: CouchDB (Erlang/OTP)

{
"results": [
{
"id": "foo",
"docs": [
{
"ok": {
"_id": "foo",
"_rev": "4-753875d51501a6b1883a9d62b4d33£f91",
"value": "this is foo",
"_revisions": {

"start": 4,

"ids": [
"753875d51501a6b188329d62b4d33£91",
"efc54218773cb6acd910e2e97fea2a608",
"2ee767305024673cfb3£f5af0®37cd2729",
"4a7e4aed49c4366eaed8edeaeca8f784ad"

]

}
}
}
1
3,
{
"id": "foo",
"docs": [
{
"ok": {
"_id": "foo",
"_rev": "1-4a7e4aed49c4366eaed8edeacaldf784ad",
"value": "this is the first revision of foo",
"_revisions": {

"start": 1,

"ids": [
"4a7e4ae49c4366eaed8edeaeca8f784ad"

]

}
}
}
]
}
{
"id": "bar",
"docs": [
{
"ok": {
"_id": "bar",
"_rev": "2-9b71d36dfdd9b4815388eb91cc8fb61d",
"baz": true,

(continues on next page)

370

Chapter 12. API Reference

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"_revisions": {

"start": 2,

"ids": [
"9b71d36dfdd9b4815388eb91cc8fb61d",
"309651b95df56d52658650fb64257b97"

]

}
}
}
1
3,
{
"id": "baz",
"docs": [
{
"error": {
"id": "baz",
"rev": "undefined",
"error": "not_found",
"reason": "missing"”
}
}
1
}
]
}

Example response with a conflicted document:

Request:

POST /db/_bulk_get HTTP/1.1
Accept: application/json
Content-Type:application/json
Host: localhost:5984

{
"docs": [
{
n idll : " all
}
]
}
Response:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Mon, 19 Mar 2018 15:27:34 GMT
Server: CouchDB (Erlang/O0TP)

{
"results": [
{
"id": "a",
"docs": [

(continues on next page)

12.3. Databases 371

Apache CouchDB®, Release 3.3.3

(continued from previous page)

{
"ok": {
"_id": "a",
"_rev": "1-23202479633c2b380£79507a776743d5",
"a": 1
3
3,
{
"ok": {
"_id": "a",
"_rev": "1-967a00dff5e02add41819138abb3284d"
}
}

12.3.5 /{db}/_bulk_docs

POST /{db}/_bulk_docs

The bulk document API allows you to create and update multiple documents at the same time within a single
request. The basic operation is similar to creating or updating a single document, except that you batch the
document structure and information.

When creating new documents the document ID (_id) is optional.

For updating existing documents, you must provide the document ID, revision information (_rev), and new
document values.

In case of batch deleting documents all fields as document ID, revision information and deletion status
(_deleted) are required.

Parameters
e db — Database name
Request Headers
* Accept —
— application/json
- text/plain
* Content-Type — application/json
Request JSON Object
* docs (array) — List of documents objects

* new_edits (boolean) - If false, prevents the database from assigning them new re-
vision IDs. Default is true. Optional

Response Headers
* Content-Type —
— application/json
— text/plain; charset=utf-8
Response JSON Array of Objects

e id (string) — Document ID

372

Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

Apache CouchDB®, Release 3.3.3

e rev (string) — New document revision token. Available if document has saved without

errors. Optional
* error (string) — Error type. Optional
* reason (string) — Error reason. Optional
Status Codes
* 201 Created — Document(s) have been created or updated
* 400 Bad Request — The request provided invalid JSON data
* 404 Not Found — Requested database not found

Request:

POST /db/_bulk_docs HTTP/1.1
Accept: application/json
Content-Length: 109
Content-Type:application/json
Host: localhost:5984

{
"docs": [
{
"_id": "FishStew"
3,
{
"_id": "LambStew",
"_rev": "2-0786321986194c92dd3b57dfbfc741ce",
"_deleted": true
}
]
}
Response:

HTTP/1.1 201 Created

Cache-Control: must-revalidate
Content-Length: 144

Content-Type: application/json
Date: Mon, 12 Aug 2013 00:15:05 GMT
Server: CouchDB (Erlang/OTP)

[
{
"ok": true,
"id": "FishStew",
"rev":" 1-967a00dff5e02add41819138abb3284d"
b
{
"ok": true,
"id": "LambStew",
"rev": "3-f9c62b2169d0999103e9f41949090807"
}
1

12.3. Databases

373

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Apache CouchDB®, Release 3.3.3

Inserting Documents in Bulk

Each time a document is stored or updated in CouchDB, the internal B-tree is updated. Bulk insertion provides
efficiency gains in both storage space, and time, by consolidating many of the updates to intermediate B-tree nodes.

It is not intended as a way to perform ACID-like transactions in CouchDB, the only transaction boundary within
CouchDB is a single update to a single database. The constraints are detailed in Bulk Documents Transaction
Semantics.

To insert documents in bulk into a database you need to supply a JSON structure with the array of documents
that you want to add to the database. You can either include a document ID, or allow the document ID to be
automatically generated.

For example, the following update inserts three new documents, two with the supplied document IDs, and one
which will have a document ID generated:

POST /source/_bulk_docs HTTP/1.1
Accept: application/json
Content-Length: 323
Content-Type: application/json
Host: localhost:5984

{
"docs": [

{
"_id": "FishStew",
"servings": 4,
"subtitle": "Delicious with freshly baked bread",
"title": "FishStew"

1,

{
"_id": "LambStew",
"servings": 6,
"subtitle": "Serve with a whole meal scone topping",
"title": "LambStew"

1,

{
"servings": 8,
"subtitle": "Hand-made dumplings make a great accompaniment",
"title": "BeefStew"

}

]
}

The return type from a bulk insertion will be 201 Created, with the content of the returned structure indicating
specific success or otherwise messages on a per-document basis.

The return structure from the example above contains a list of the documents created, here with the combination
and their revision IDs:

HTTP/1.1 201 Created

Cache-Control: must-revalidate
Content-Length: 215

Content-Type: application/json
Date: Sat, 26 Oct 2013 00:10:39 GMT
Server: CouchDB (Erlang OTP)

L

"id": "FishStew",

(continues on next page)

374 Chapter 12. API Reference

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"ok": true,

"rev": "1-6a466d5dfda®5e613ba97bd737829d67"
3,
{

"id": "LambStew",

"ok": true,

"rev": "1-648f1b989d52b8e43£f05aa877092cc7c"
1,
{

"id": "00a271787£89c0ef2e10e88a0cO003f0",

"ok": true,

"rev": "1-e4602845fc4c99674f50b1d5a804fdfa"
}

For details of the semantic content and structure of the returned JSON see Bulk Documents Transaction Semantics.
Conflicts and validation errors when updating documents in bulk must be handled separately; see Bulk Document
Validation and Conflict Errors.

Updating Documents in Bulk

The bulk document update procedure is similar to the insertion procedure, except that you must specify the docu-
ment ID and current revision for every document in the bulk update JSON string.

For example, you could send the following request:

POST /recipes/_bulk_docs HTTP/1.1
Accept: application/json
Content-Length: 464

Content-Type: application/json
Host: localhost:5984

"docs": [
{
"_id": "FishStew",
"_rev": "1-6a466d5dfda®5e613ba97bd737829d67",
"servings": 4,
"subtitle": "Delicious with freshly baked bread",
"title": "FishStew"

1,

{
"_id": "LambStew",
"_rev": "1-648f1b989d52b8e43f05aa877092cc7c",
"servings": 6,
"subtitle": "Serve with a whole meal scone topping",
"title": "LambStew"

1

{
"_id": "BeefStew",
"_rev": "1-e4602845fc4c99674f50b1d5a804fdfa",
"servings": 8,
"subtitle": "Hand-made dumplings make a great accompaniment",
"title": "BeefStew"

}

(continues on next page)

12.3. Databases 375

Apache CouchDB®, Release 3.3.3

(continued from previous page)

The return structure is the JSON of the updated documents, with the new revision and ID information:

HTTP/1.1 201 Created

Cache-Control: must-revalidate
Content-Length: 215

Content-Type: application/json
Date: Sat, 26 Oct 2013 00:10:39 GMT
Server: CouchDB (Erlang OTP)

[
{
"id": "FishStew",
"ok": true,
"rev": "2-2bff94179917f1dec7cd7£0209066fb8"
1
{
"id": "LambStew",
"ok": true,
"rev": "2-6a7aae7ac481aa98a2042718d09843c4"
1
{
"id": "BeefStew",
"ok": true,
"rev": "2-9801936a42f06al16f16c30027980d96f"
1
]

You can optionally delete documents during a bulk update by adding the _deleted field with a value of true to
each document ID/revision combination within the submitted JSON structure.

The return type from a bulk insertion will be 201 Created, with the content of the returned structure indicating
specific success or otherwise messages on a per-document basis.

The content and structure of the returned JSON will depend on the transaction semantics being used for the bulk
update; see Bulk Documents Transaction Semantics for more information. Conflicts and validation errors when
updating documents in bulk must be handled separately; see Bulk Document Validation and Conflict Errors.

Bulk Documents Transaction Semantics

Bulk document operations are non-atomic. This means that CouchDB does not guarantee that any individual
document included in the bulk update (or insert) will be saved when you send the request. The response will
contain the list of documents successfully inserted or updated during the process. In the event of a crash, some of
the documents may have been successfully saved, while others lost.

The response structure will indicate whether the document was updated by supplying the new _rev parameter
indicating a new document revision was created. If the update failed, you will get an error of type conflict.
For example:

[
{
"id" : "FishStew",
"error" : "conflict",
"reason" : "Document update conflict."
1,
{

(continues on next page)

376 Chapter 12. API Reference

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"id" : "LambStew",

"error" : "conflict",

"reason" : "Document update conflict."
3
{

"id" : "BeefStew",

"error" : "conflict",

"reason" : "Document update conflict."
}

1

In this case no new revision has been created and you will need to submit the document update, with the correct
revision tag, to update the document.

Replication of documents is independent of the type of insert or update. The documents and revisions created
during a bulk insert or update are replicated in the same way as any other document.

Bulk Document Validation and Conflict Errors

The JSON returned by the _bulk_docs operation consists of an array of JSON structures, one for each document
in the original submission. The returned JSON structure should be examined to ensure that all of the documents
submitted in the original request were successfully added to the database.

When a document (or document revision) is not correctly committed to the database because of an error, you should
check the error field to determine error type and course of action. Errors will be one of the following type:

« conflict

The document as submitted is in conflict. The new revision will not have been created and you will need to
re-submit the document to the database.

Conflict resolution of documents added using the bulk docs interface is identical to the resolution procedures
used when resolving conflict errors during replication.

¢ forbidden

Entries with this error type indicate that the validation routine applied to the document during submission
has returned an error.

For example, if your validation routine includes the following:

throw({forbidden: 'invalid recipe ingredient'});

The error response returned will be:

HTTP/1.1 201 Created

Cache-Control: must-revalidate
Content-Length: 80

Content-Type: application/json
Date: Sat, 26 Oct 2013 00:05:17 GMT
Server: CouchDB (Erlang OTP)

[
{
"id": "LambStew",
"error": "forbidden",
"reason": "invalid recipe ingredient"
}
]

12.3. Databases 377

Apache CouchDB®, Release 3.3.3

12.3.6 /db/_find

POST /{db}/_find

Find documents using a declarative JSON querying syntax. Queries will use custom indexes, specified using
the _index endpoint, if available. Otherwise, they use the built-in _al/l_docs index, which can be arbitrarily
slow.

Parameters
* db — Database name
Request Headers
* Content-Type —
— application/json
Request JSON Object

» selector (json) — JSON object describing criteria used to select documents. More
information provided in the section on selector syntax. Required

e limit (number) — Maximum number of results returned. Default is 25. Optional
 skip (number) — Skip the first ‘n’ results, where ‘n’ is the value specified. Optional
» sort (json) — JSON array following sort syntax. Optional

o fields (array)-JSON array specifying which fields of each object should be returned.
If it is omitted, the entire object is returned. More information provided in the section
on filtering fields. Optional

» use_index (string/array) — Instruct a query to use a specific index. Specified either
as "<design_document>" or ["<design_document>", "<index_name>"]. Op-
tional

» conflicts (boolean)-Include conflicted documents if true. Intended use is to easily
find conflicted documents, without an index or view. Default is false. Optional

* r (number) — Read quorum needed for the result. This defaults to 1, in which case the
document found in the index is returned. If set to a higher value, each document is read
from at least that many replicas before it is returned in the results. This is likely to take
more time than using only the document stored locally with the index. Optional, default:
1

* bookmark (string) — A string that enables you to specify which page of results you
require. Used for paging through result sets. Every query returns an opaque string under
the bookmark key that can then be passed back in a query to get the next page of results.
If any part of the selector query changes between requests, the results are undefined.
Optional, default: null

» update (boolean)— Whether to update the index prior to returning the result. Default
is true. Optional

e stable (boolean)— Whether or not the view results should be returned from a “stable”
set of shards. Optional

» stale (string)—Combination of update=false and stable=true options. Possible
options: "ok", false (default). Optional Note that this parameter is deprecated. Use
stable and update instead. See Views Generation for more details.

* execution_stats (boolean)—Include execution statistics in the query response. Op-
tional, default: false

Response Headers
* Content-Type — application/json

* Transfer-Encoding — chunked

378 Chapter 12. API Reference

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7230#section-3.3.1

Apache CouchDB®, Release 3.3.3

Response JSON Object

* docs (object) — Array of documents matching the search. In each matching document,
the fields specified in the fields part of the request body are listed, along with their

values.
* warning (string) — Execution warnings

e execution_stats (object) — Execution statistics

* bookmark (string)— An opaque string used for paging. See the bookmark field in the

request (above) for usage details.
Status Codes
* 200 OK — Request completed successfully
* 400 Bad Request — Invalid request
* 401 Unauthorized — Read permission required
* 404 Not Found — Requested database not found

* 500 Internal Server Error — Query execution error

The 1limit and skip values are exactly as you would expect. While skip exists, it is not intended to be used for

paging. The reason is that the bookmark feature is more efficient.
Request:

Example request body for finding documents using an index:

POST /movies/_find HTTP/1.1
Accept: application/json
Content-Type: application/json
Content-Length: 168
Host: localhost:5984
{
"selector": {
"year": {"$gt": 2010}
3,
"fields": ["_id", "_rev", "year", "title"],
"sort": [{"year": "asc"}],
"limit": 2,
"skip": O,
"execution_stats": true
}
Response:

Example response when finding documents using an index:

HTTP/1.1 200 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Thu, 01 Sep 2016 15:41:53 GMT
Server: CouchDB (Erlang OTP)
Transfer-Encoding: chunked

{
"docs": [
{
"_id": "176694",
"_rev": "1-54f8e950cc338d2385d9b0cda2fd918e"

(continues on next page)

12.3. Databases

379

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"year": 2011,
"title": "The Tragedy of Man"
1,
{
"_id": "780504",
"_rev": "1-5fl4bablale9ac3ebdf85905f47fb084",
"year": 2011,
"title": "Drive"
}

1,

"execution_stats": {
"total_keys_examined": 0,
"total_docs_examined": 200,
"total_quorum_docs_examined": 0,
"results_returned": 2,
"execution_time_ms": 5.52

Selector Syntax

Selectors are expressed as a JSON object describing documents of interest. Within this structure, you can apply
conditional logic using specially named fields.

Whilst selectors have some similarities with MongoDB query documents, these arise from a similarity of purpose
and do not necessarily extend to commonality of function or result.

Selector Basics

Elementary selector syntax requires you to specify one or more fields, and the corresponding values required for
those fields. This selector matches all documents whose “director” field has the value “Lars von Trier”.

{

"director": "Lars von Trier"

A simple selector, inspecting specific fields

"selector": {
"title": "Live And Let Die"

3,
"fields": [
"title",
"cast"

]

You can create more complex selector expressions by combining operators. For best performance, it is best to
combine ‘combination’ or ‘array logical’ operators, such as $regex, with an equality operators such as $eq, $gt,
$gte, $1t, and $1te (butnot $ne). For more information about creating complex selector expressions, see creating
selector EX]?}"(:‘SS[()}”[S.

380 Chapter 12. API Reference

Apache CouchDB®, Release 3.3.3

Selector with 2 fields

This selector matches any document with a name field containing "Paul", and that also has a location field with
the value "Boston".

{
"name": "Paul",
"location": "Boston"
}
Subfields

A more complex selector enables you to specify the values for field of nested objects, or subfields. For example,
you might use a standard JSON structure for specifying a field and subfield.

Example of a field and subfield selector, using a standard JSON structure:

{
"imdb": {
"rating": 8

An abbreviated equivalent uses a dot notation to combine the field and subfield names into a single name.

{

"imdb.rating": 8
}
Operators

Operators are identified by the use of a dollar sign ($) prefix in the name field.
There are two core types of operators in the selector syntax:

* Combination operators

 Condition operators

In general, combination operators are applied at the topmost level of selection. They are used to combine conditions,
or to create combinations of conditions, into one selector.

Every explicit operator has the form:

{"$operator": argument}

A selector without an explicit operator is considered to have an implicit operator. The exact implicit operator is
determined by the structure of the selector expression.

12.3. Databases 381

Apache CouchDB®, Release 3.3.3

Implicit Operators

There are two implicit operators:
* Equality
e And

In a selector, any field containing a JSON value, but that has no operators in it, is considered to be an equality
condition. The implicit equality test applies also for fields and subfields.

Any JSON object that is not the argument to a condition operator is an implicit $and operator on each field.

In the below example, we use an operator to match any document, where the "year" field has a value greater than
2010:

{
"year": {
"$gt": 2010
}
}

In this next example, there must be a field "director" in a matching document, and the field must have a value
exactly equal to "Lars von Trier".

{

"director": "Lars von Trier"

}

You can also make the equality operator explicit.

{
"director": {
"$eq": "Lars von Trier"

}

In the next example using subfields, the required field "imdb" in a matching document must also have a subfield
"rating" and the subfield must have a value equal to 8.

Example of implicit operator applied to a subfield test

{
"imdb": {
"rating": 8

}

Again, you can make the equality operator explicit.

{
"imdb": {
"rating": { "$eq": 8 }

}

An example of the $eq operator used with full text indexing

{
"selector": {
"year": {

(continues on next page)

382 Chapter 12. API Reference

Apache CouchDB®, Release 3.3.3

(continued from previous page)

"$eq": 2001

}

1,

"sort": [
"title:string"

1,

"fields": [
"title"

]

}

An example of the $eq operator used with database indexed on the field "year"

{
"selector": {
"year": {
"$eq": 2001
}
1,
"sort": [
"year"
1,
"fields": [
"year"
1
}

In this example, the field "director" must be present and contain the value "Lars von Trier" and the field
"year" must exist and have the value 2003.

{

"director": "Lars von Trier",
"year": 2003
}

You can make both the $and operator and the equality operator explicit.

Example of using explicit $and and $eq operators

{
"$and": [
{
"director": {
"$eq": "Lars von Trier"
}
1
{
"year": {
"$eq": 2003
}
}
]
}

12.3. Databases 383

Apache CouchDB®, Release 3.3.3

Explicit Operators

All operators, apart from ‘Equality’ and ‘And’, must be stated explicitly.

Combination Operators

Combination operators are used to combine selectors. In addition to the common boolean operators found in most
programming languages, there are three combination operators ($all, $elemMatch, and $allMatch) that help
you work with JSON arrays and one that works with JSON maps ($keyMapMatch).

A combination operator takes a single argument. The argument is either another selector, or an array of selectors.

The list of combination operators:

Operator | Argu- | Purpose
ment

$and Array | Matches if all the selectors in the array match.

$or Array | Matches if any of the selectors in the array match. All selectors must use the same

index.

$not Selec- | Matches if the given selector does not match.
tor

$nor Array | Matches if none of the selectors in the array match.

$all Array | Matches an array value if it contains all the elements of the argument array.

$elemMatch Selec- | Matches and returns all documents that contain an array field with at least one element
tor that matches all the specified query criteria.

$allMatch| Selec- | Matches and returns all documents that contain an array field with all its elements
tor matching all the specified query criteria.

$keyMapMat&elec- | Matches and returns all documents that contain a map that contains at least one key that
tor matches all the specified query criteria.

The $and operator
$and operator used with two fields

{
"selector": {
"$and": [
{
"title": "Total Recall”
I
{
"year": {
"$in": [1984, 1991]
}
}
]
3,
"fields": [
"year",
"title",
"cast"
]
}
The $and operator matches if all the selectors in the array match. Below is an example using the primary index
(Lall_docs):
384 Chapter 12. API Reference

Apache CouchDB®, Release 3.3.3

{
"$and": [
{
"_id": { "$gt": null }
1,
{
"year": {
"$in": [2014, 2015]
}
}
]
}

The $or operator

The $or operator matches if any of the selectors in the array match. Below is an example used with an index on
the field "year"

{
"year": 1977,
"$or": [
{ "director": "George Lucas" },
{ "director": "Steven Spielberg" }
]
}

The $not operator

The $not operator matches if the given selector does not match. Below is an example used with an index on the
field "year™":

{
uyearn: {
"$gte": 1900
}1
"year": {
"$1lte": 1903
1,
"$not": {
"year": 1901
3
}

The $nor operator

The $nor operator matches if the given selector does not match. Below is an example used with an index on the
field "year":

{

"year": {
"$gte": 1900

3

"year": {
"$1te": 1910

}1

"$nor": [

{ "year": 1901 },
{ "year": 1905 1},
{ "year": 1907 }

(continues on next page)

12.3. Databases 385

Apache CouchDB®, Release 3.3.3

(continued from previous page)

The $all operator

The $all operator matches an array value if it contains all the elements of the argument array. Below is an example
used w